用于主题学习的新型混合分配模型

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kamal Maanicshah, Manar Amayri, Nizar Bouguila
{"title":"用于主题学习的新型混合分配模型","authors":"Kamal Maanicshah,&nbsp;Manar Amayri,&nbsp;Nizar Bouguila","doi":"10.1111/coin.12641","DOIUrl":null,"url":null,"abstract":"<p>Latent Dirichlet allocation (LDA) is one of the major models used for topic modelling. A number of models have been proposed extending the basic LDA model. There has also been interesting research to replace the Dirichlet prior of LDA with other pliable distributions like generalized Dirichlet, Beta-Liouville and so forth. Owing to the proven efficiency of using generalized Dirichlet (GD) and Beta-Liouville (BL) priors in topic models, we use these versions of topic models in our paper. Furthermore, to enhance the support of respective topics, we integrate mixture components which gives rise to generalized Dirichlet mixture allocation and Beta-Liouville mixture allocation models respectively. In order to improve the modelling capabilities, we use variational inference method for estimating the parameters. Additionally, we also introduce an online variational approach to cater to specific applications involving streaming data. We evaluate our models based on its performance on applications related to text classification, image categorization and genome sequence classification using a supervised approach where the labels are used as an observed variable within the model.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.12641","citationCount":"0","resultStr":"{\"title\":\"Novel mixture allocation models for topic learning\",\"authors\":\"Kamal Maanicshah,&nbsp;Manar Amayri,&nbsp;Nizar Bouguila\",\"doi\":\"10.1111/coin.12641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Latent Dirichlet allocation (LDA) is one of the major models used for topic modelling. A number of models have been proposed extending the basic LDA model. There has also been interesting research to replace the Dirichlet prior of LDA with other pliable distributions like generalized Dirichlet, Beta-Liouville and so forth. Owing to the proven efficiency of using generalized Dirichlet (GD) and Beta-Liouville (BL) priors in topic models, we use these versions of topic models in our paper. Furthermore, to enhance the support of respective topics, we integrate mixture components which gives rise to generalized Dirichlet mixture allocation and Beta-Liouville mixture allocation models respectively. In order to improve the modelling capabilities, we use variational inference method for estimating the parameters. Additionally, we also introduce an online variational approach to cater to specific applications involving streaming data. We evaluate our models based on its performance on applications related to text classification, image categorization and genome sequence classification using a supervised approach where the labels are used as an observed variable within the model.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.12641\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12641\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12641","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

Latent Dirichlet allocation(LDA)是用于主题建模的主要模型之一。人们提出了许多扩展基本 LDA 模型的模型。还有一些有趣的研究是用其他柔性分布(如广义 Dirichlet 分布、Beta-Liouville 分布等)取代 LDA 的 Dirichlet 先验分布。由于在主题模型中使用广义 Dirichlet(GD)和 Beta-Liouville (BL)先验的效率已得到证实,我们在本文中使用了这些版本的主题模型。此外,为了增强各自主题的支持度,我们还整合了混合成分,从而分别产生了广义狄利克特混合分配模型和贝塔-刘维尔混合分配模型。为了提高建模能力,我们使用变分推理方法来估计参数。此外,我们还引入了在线变分方法,以满足涉及流数据的特定应用。我们根据模型在文本分类、图像分类和基因组序列分类等相关应用中的性能,采用有监督的方法对模型进行了评估,其中标签被用作模型中的观察变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Novel mixture allocation models for topic learning

Novel mixture allocation models for topic learning

Latent Dirichlet allocation (LDA) is one of the major models used for topic modelling. A number of models have been proposed extending the basic LDA model. There has also been interesting research to replace the Dirichlet prior of LDA with other pliable distributions like generalized Dirichlet, Beta-Liouville and so forth. Owing to the proven efficiency of using generalized Dirichlet (GD) and Beta-Liouville (BL) priors in topic models, we use these versions of topic models in our paper. Furthermore, to enhance the support of respective topics, we integrate mixture components which gives rise to generalized Dirichlet mixture allocation and Beta-Liouville mixture allocation models respectively. In order to improve the modelling capabilities, we use variational inference method for estimating the parameters. Additionally, we also introduce an online variational approach to cater to specific applications involving streaming data. We evaluate our models based on its performance on applications related to text classification, image categorization and genome sequence classification using a supervised approach where the labels are used as an observed variable within the model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信