{"title":"用于主题学习的新型混合分配模型","authors":"Kamal Maanicshah, Manar Amayri, Nizar Bouguila","doi":"10.1111/coin.12641","DOIUrl":null,"url":null,"abstract":"<p>Latent Dirichlet allocation (LDA) is one of the major models used for topic modelling. A number of models have been proposed extending the basic LDA model. There has also been interesting research to replace the Dirichlet prior of LDA with other pliable distributions like generalized Dirichlet, Beta-Liouville and so forth. Owing to the proven efficiency of using generalized Dirichlet (GD) and Beta-Liouville (BL) priors in topic models, we use these versions of topic models in our paper. Furthermore, to enhance the support of respective topics, we integrate mixture components which gives rise to generalized Dirichlet mixture allocation and Beta-Liouville mixture allocation models respectively. In order to improve the modelling capabilities, we use variational inference method for estimating the parameters. Additionally, we also introduce an online variational approach to cater to specific applications involving streaming data. We evaluate our models based on its performance on applications related to text classification, image categorization and genome sequence classification using a supervised approach where the labels are used as an observed variable within the model.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.12641","citationCount":"0","resultStr":"{\"title\":\"Novel mixture allocation models for topic learning\",\"authors\":\"Kamal Maanicshah, Manar Amayri, Nizar Bouguila\",\"doi\":\"10.1111/coin.12641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Latent Dirichlet allocation (LDA) is one of the major models used for topic modelling. A number of models have been proposed extending the basic LDA model. There has also been interesting research to replace the Dirichlet prior of LDA with other pliable distributions like generalized Dirichlet, Beta-Liouville and so forth. Owing to the proven efficiency of using generalized Dirichlet (GD) and Beta-Liouville (BL) priors in topic models, we use these versions of topic models in our paper. Furthermore, to enhance the support of respective topics, we integrate mixture components which gives rise to generalized Dirichlet mixture allocation and Beta-Liouville mixture allocation models respectively. In order to improve the modelling capabilities, we use variational inference method for estimating the parameters. Additionally, we also introduce an online variational approach to cater to specific applications involving streaming data. We evaluate our models based on its performance on applications related to text classification, image categorization and genome sequence classification using a supervised approach where the labels are used as an observed variable within the model.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/coin.12641\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12641\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12641","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Novel mixture allocation models for topic learning
Latent Dirichlet allocation (LDA) is one of the major models used for topic modelling. A number of models have been proposed extending the basic LDA model. There has also been interesting research to replace the Dirichlet prior of LDA with other pliable distributions like generalized Dirichlet, Beta-Liouville and so forth. Owing to the proven efficiency of using generalized Dirichlet (GD) and Beta-Liouville (BL) priors in topic models, we use these versions of topic models in our paper. Furthermore, to enhance the support of respective topics, we integrate mixture components which gives rise to generalized Dirichlet mixture allocation and Beta-Liouville mixture allocation models respectively. In order to improve the modelling capabilities, we use variational inference method for estimating the parameters. Additionally, we also introduce an online variational approach to cater to specific applications involving streaming data. We evaluate our models based on its performance on applications related to text classification, image categorization and genome sequence classification using a supervised approach where the labels are used as an observed variable within the model.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.