{"title":"通过继承了金属有机框架多面体形态的 CoB/NCPS 复合材料,为吸附/催化多硫化物转化提供强大协同效应的硫宿主设计","authors":"Xueli Yan, Ying Zhang, Zihao Cheng, Yumiao Han, Mengmeng Zhu, Shixian Xu, Yutao Dong, Jianmin Zhang","doi":"10.1016/j.cej.2024.151129","DOIUrl":null,"url":null,"abstract":"As a promising option for next-generation energy storage systems, the high specific capacity and energy density of lithium-sulfur (Li-S) battery have attracted significant attention. Actually, high-energy–density lithium-sulfur batteries face challenges due to the “shuttle effect” and slow conversion kinetics of lithium polysulfides (LiPSs), which can be successfully circumvented by multifunctional materials. Here, we report a sulfur cathode based on a new type of cobalt boride (CoB) alloy which is uniformly distributed on the nitrogen-doped carbon polyhedral shell (CoB/NCPS). In our conception, ZIF-67 is partially reduced to form the CoB alloy as catalyst while still retains its original polyhedron morphology as the catalyst supporter, which would be much beneficial to the electrochemical performance of the sulfur cathode through further pyrolysis. As expected, the resultant S@CoB/NCPS cathode enables an initial discharge specific capacity as high as 1022.3 mAh/g at 1C, and can even endure a high rate up to 5C with an initial capacity of 782.7 mAh/g and deliver an ultralow capacity decay rate of 0.06 % per cycle over 1000 cycles. This study not only demonstrates that the CoB/NCPS composites as sulfur host have the extraordinary adsorption performance and excellent electrocatalysis activity in the redox conversion reaction of sulfur/LiS, but also provides a tractable strategy for the fabrication of metal borides with perfect morphology in lithium-sulfur batteries.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"2013 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sulfur-Host design for Adsorption/Catalysis strong synergy on polysulfide conversions via CoB/NCPS composites inheriting the polyhedron morphology of Metal-Organic framework\",\"authors\":\"Xueli Yan, Ying Zhang, Zihao Cheng, Yumiao Han, Mengmeng Zhu, Shixian Xu, Yutao Dong, Jianmin Zhang\",\"doi\":\"10.1016/j.cej.2024.151129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a promising option for next-generation energy storage systems, the high specific capacity and energy density of lithium-sulfur (Li-S) battery have attracted significant attention. Actually, high-energy–density lithium-sulfur batteries face challenges due to the “shuttle effect” and slow conversion kinetics of lithium polysulfides (LiPSs), which can be successfully circumvented by multifunctional materials. Here, we report a sulfur cathode based on a new type of cobalt boride (CoB) alloy which is uniformly distributed on the nitrogen-doped carbon polyhedral shell (CoB/NCPS). In our conception, ZIF-67 is partially reduced to form the CoB alloy as catalyst while still retains its original polyhedron morphology as the catalyst supporter, which would be much beneficial to the electrochemical performance of the sulfur cathode through further pyrolysis. As expected, the resultant S@CoB/NCPS cathode enables an initial discharge specific capacity as high as 1022.3 mAh/g at 1C, and can even endure a high rate up to 5C with an initial capacity of 782.7 mAh/g and deliver an ultralow capacity decay rate of 0.06 % per cycle over 1000 cycles. This study not only demonstrates that the CoB/NCPS composites as sulfur host have the extraordinary adsorption performance and excellent electrocatalysis activity in the redox conversion reaction of sulfur/LiS, but also provides a tractable strategy for the fabrication of metal borides with perfect morphology in lithium-sulfur batteries.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"2013 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.151129\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.151129","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A Sulfur-Host design for Adsorption/Catalysis strong synergy on polysulfide conversions via CoB/NCPS composites inheriting the polyhedron morphology of Metal-Organic framework
As a promising option for next-generation energy storage systems, the high specific capacity and energy density of lithium-sulfur (Li-S) battery have attracted significant attention. Actually, high-energy–density lithium-sulfur batteries face challenges due to the “shuttle effect” and slow conversion kinetics of lithium polysulfides (LiPSs), which can be successfully circumvented by multifunctional materials. Here, we report a sulfur cathode based on a new type of cobalt boride (CoB) alloy which is uniformly distributed on the nitrogen-doped carbon polyhedral shell (CoB/NCPS). In our conception, ZIF-67 is partially reduced to form the CoB alloy as catalyst while still retains its original polyhedron morphology as the catalyst supporter, which would be much beneficial to the electrochemical performance of the sulfur cathode through further pyrolysis. As expected, the resultant S@CoB/NCPS cathode enables an initial discharge specific capacity as high as 1022.3 mAh/g at 1C, and can even endure a high rate up to 5C with an initial capacity of 782.7 mAh/g and deliver an ultralow capacity decay rate of 0.06 % per cycle over 1000 cycles. This study not only demonstrates that the CoB/NCPS composites as sulfur host have the extraordinary adsorption performance and excellent electrocatalysis activity in the redox conversion reaction of sulfur/LiS, but also provides a tractable strategy for the fabrication of metal borides with perfect morphology in lithium-sulfur batteries.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.