Samuel Franco-Luesma, María Alonso-Ayuso, Benjamin Wolf, Borja Latorre, Jorge Álvaro-Fuentes
{"title":"利用灵活、开放式设计的自动化系统测量农业土壤中的温室气体通量","authors":"Samuel Franco-Luesma, María Alonso-Ayuso, Benjamin Wolf, Borja Latorre, Jorge Álvaro-Fuentes","doi":"10.5194/egusphere-2024-804","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Over the last decades and due to the current climate change situation, the study of the impacts of human activities on climate has reached great importance, being agriculture one of the main sources of soil greenhouse gas. There are different techniques to quantify the soil gas fluxes, such as micrometeorological techniques or chamber techniques, being the last one capable to assess different treatment at the same site. Manual chambers are the most common one. However, due to the low sampling frequency, this approach cannot resolve short-term emission events, like fertilization or rewetting. For this reason, automated chamber systems are an opportunity to improve soil gas flux determination, but their distribution is still scarce due to the cost and challenging technical implementation. The objective of this study was to develop an automated chamber system for agricultural systems under Mediterranean conditions and compare measured GHG flux rates to those derived using manual chambers. A comparison between manual and automated chamber systems was conducted to evaluate the soil gas fluxes obtained by the automated system. Moreover, over a period of one month the soil gas fluxes were determined by both systems to compare their capabilities to capture the temporal variability of soil gas emissions. The automated system reported higher soil GHG fluxes compared to the manual chamber system. Additionally, the higher sampling frequency of the automated chamber system allowed for the capture of daily flux variations, resulting in a more accurate estimation of cumulative soil gas emissions. The study emphasises the importance of chamber dimension and shape, as well as sampling frequency, in the development of chamber systems, especially when using the manual chamber system.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"163 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of greenhouse gas fluxes in agricultural soils with a flexible, open-design automated system\",\"authors\":\"Samuel Franco-Luesma, María Alonso-Ayuso, Benjamin Wolf, Borja Latorre, Jorge Álvaro-Fuentes\",\"doi\":\"10.5194/egusphere-2024-804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Over the last decades and due to the current climate change situation, the study of the impacts of human activities on climate has reached great importance, being agriculture one of the main sources of soil greenhouse gas. There are different techniques to quantify the soil gas fluxes, such as micrometeorological techniques or chamber techniques, being the last one capable to assess different treatment at the same site. Manual chambers are the most common one. However, due to the low sampling frequency, this approach cannot resolve short-term emission events, like fertilization or rewetting. For this reason, automated chamber systems are an opportunity to improve soil gas flux determination, but their distribution is still scarce due to the cost and challenging technical implementation. The objective of this study was to develop an automated chamber system for agricultural systems under Mediterranean conditions and compare measured GHG flux rates to those derived using manual chambers. A comparison between manual and automated chamber systems was conducted to evaluate the soil gas fluxes obtained by the automated system. Moreover, over a period of one month the soil gas fluxes were determined by both systems to compare their capabilities to capture the temporal variability of soil gas emissions. The automated system reported higher soil GHG fluxes compared to the manual chamber system. Additionally, the higher sampling frequency of the automated chamber system allowed for the capture of daily flux variations, resulting in a more accurate estimation of cumulative soil gas emissions. The study emphasises the importance of chamber dimension and shape, as well as sampling frequency, in the development of chamber systems, especially when using the manual chamber system.\",\"PeriodicalId\":48610,\"journal\":{\"name\":\"Soil\",\"volume\":\"163 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-804\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-804","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Measurement of greenhouse gas fluxes in agricultural soils with a flexible, open-design automated system
Abstract. Over the last decades and due to the current climate change situation, the study of the impacts of human activities on climate has reached great importance, being agriculture one of the main sources of soil greenhouse gas. There are different techniques to quantify the soil gas fluxes, such as micrometeorological techniques or chamber techniques, being the last one capable to assess different treatment at the same site. Manual chambers are the most common one. However, due to the low sampling frequency, this approach cannot resolve short-term emission events, like fertilization or rewetting. For this reason, automated chamber systems are an opportunity to improve soil gas flux determination, but their distribution is still scarce due to the cost and challenging technical implementation. The objective of this study was to develop an automated chamber system for agricultural systems under Mediterranean conditions and compare measured GHG flux rates to those derived using manual chambers. A comparison between manual and automated chamber systems was conducted to evaluate the soil gas fluxes obtained by the automated system. Moreover, over a period of one month the soil gas fluxes were determined by both systems to compare their capabilities to capture the temporal variability of soil gas emissions. The automated system reported higher soil GHG fluxes compared to the manual chamber system. Additionally, the higher sampling frequency of the automated chamber system allowed for the capture of daily flux variations, resulting in a more accurate estimation of cumulative soil gas emissions. The study emphasises the importance of chamber dimension and shape, as well as sampling frequency, in the development of chamber systems, especially when using the manual chamber system.
SoilAgricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍:
SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences.
SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).