{"title":"关于正整数的相交和族","authors":"Aaron Berger, Nitya Mani","doi":"10.1016/j.ejc.2024.103963","DOIUrl":null,"url":null,"abstract":"<div><p>We study the following natural arithmetic question regarding intersecting families: how large can a family of subsets of integers from <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mi>n</mi><mo>}</mo></mrow></math></span> be such that, for every pair of subsets in the family, the intersection contains a <em>sum</em> <span><math><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mi>z</mi></mrow></math></span>? We conjecture that any such <em>sum-intersecting</em> family must have size at most <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> (which would be tight if correct). Towards this conjecture, we show that every sum-intersecting family has at most <span><math><mrow><mn>0</mn><mo>.</mo><mn>32</mn><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> subsets.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On sum-intersecting families of positive integers\",\"authors\":\"Aaron Berger, Nitya Mani\",\"doi\":\"10.1016/j.ejc.2024.103963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the following natural arithmetic question regarding intersecting families: how large can a family of subsets of integers from <span><math><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mi>n</mi><mo>}</mo></mrow></math></span> be such that, for every pair of subsets in the family, the intersection contains a <em>sum</em> <span><math><mrow><mi>x</mi><mo>+</mo><mi>y</mi><mo>=</mo><mi>z</mi></mrow></math></span>? We conjecture that any such <em>sum-intersecting</em> family must have size at most <span><math><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> (which would be tight if correct). Towards this conjecture, we show that every sum-intersecting family has at most <span><math><mrow><mn>0</mn><mo>.</mo><mn>32</mn><mi>⋅</mi><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> subsets.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000489\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000489","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We study the following natural arithmetic question regarding intersecting families: how large can a family of subsets of integers from be such that, for every pair of subsets in the family, the intersection contains a sum ? We conjecture that any such sum-intersecting family must have size at most (which would be tight if correct). Towards this conjecture, we show that every sum-intersecting family has at most subsets.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.