Andrew J. Margenot, Jordon Wade, Finnleigh S. Woodings
{"title":"滥用高锰酸盐作为土壤有机碳的定量测量方法","authors":"Andrew J. Margenot, Jordon Wade, Finnleigh S. Woodings","doi":"10.1002/ael2.20124","DOIUrl":null,"url":null,"abstract":"<p>In the last two decades, permanganate has been used to define what is assumed to be a labile or “active” soil carbon (C) pool, commonly referred to as “permanganate-oxidizable carbon” (POXC). However, uncertainties in the reduction reaction (Mn<sup>7+</sup> → Mn<sup>4+</sup>/Mn<sup>2+</sup>) and even greater uncertainties in the oxidation reaction (C<sup>?</sup> → C<sup>?</sup>) as well as the reaction of non-C reductants in the soil sample preclude the calculation of milligram C per kilogram of soil oxidized. Combined variation in the reduction–oxidation reactions can entail up to fivefold variation in how much soil organic C is oxidized per unit permanganate reduced. Without determining final reduction state of Mn and the initial and final oxidation states of C, the amount of C oxidized cannot be calculated. Unless a concrete understanding of the reduction and oxidation half-reactions is achieved, an alternative expression of permanganate reactivity of a soil sample (i.e., not mg C kg<sup>−1</sup> soil) is needed.</p>","PeriodicalId":48502,"journal":{"name":"Agricultural & Environmental Letters","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.20124","citationCount":"0","resultStr":"{\"title\":\"The misuse of permanganate as a quantitative measure of soil organic carbon\",\"authors\":\"Andrew J. Margenot, Jordon Wade, Finnleigh S. Woodings\",\"doi\":\"10.1002/ael2.20124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the last two decades, permanganate has been used to define what is assumed to be a labile or “active” soil carbon (C) pool, commonly referred to as “permanganate-oxidizable carbon” (POXC). However, uncertainties in the reduction reaction (Mn<sup>7+</sup> → Mn<sup>4+</sup>/Mn<sup>2+</sup>) and even greater uncertainties in the oxidation reaction (C<sup>?</sup> → C<sup>?</sup>) as well as the reaction of non-C reductants in the soil sample preclude the calculation of milligram C per kilogram of soil oxidized. Combined variation in the reduction–oxidation reactions can entail up to fivefold variation in how much soil organic C is oxidized per unit permanganate reduced. Without determining final reduction state of Mn and the initial and final oxidation states of C, the amount of C oxidized cannot be calculated. Unless a concrete understanding of the reduction and oxidation half-reactions is achieved, an alternative expression of permanganate reactivity of a soil sample (i.e., not mg C kg<sup>−1</sup> soil) is needed.</p>\",\"PeriodicalId\":48502,\"journal\":{\"name\":\"Agricultural & Environmental Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ael2.20124\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural & Environmental Letters\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20124\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural & Environmental Letters","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ael2.20124","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在过去的二十年中,高锰酸盐一直被用来定义土壤中的易变或 "活性 "碳(C)池,通常称为 "高锰酸盐氧化碳"(POXC)。然而,还原反应(Mn7+ → Mn4+/Mn2+)的不确定性和氧化反应(C? → C?)的更大不确定性,以及土壤样本中非碳还原剂的反应,都阻碍了每千克土壤氧化毫克碳的计算。还原-氧化反应的综合变化可导致每单位高锰酸盐还原所氧化的土壤有机碳的数量变化高达五倍。如果不确定 Mn 的最终还原状态以及 C 的初始和最终氧化状态,就无法计算 C 的氧化量。除非对还原和氧化半反应有了具体的了解,否则就需要对土壤样本的高锰酸盐反应性(即不是毫克 C kg-1 土壤)进行替代表达。
The misuse of permanganate as a quantitative measure of soil organic carbon
In the last two decades, permanganate has been used to define what is assumed to be a labile or “active” soil carbon (C) pool, commonly referred to as “permanganate-oxidizable carbon” (POXC). However, uncertainties in the reduction reaction (Mn7+ → Mn4+/Mn2+) and even greater uncertainties in the oxidation reaction (C? → C?) as well as the reaction of non-C reductants in the soil sample preclude the calculation of milligram C per kilogram of soil oxidized. Combined variation in the reduction–oxidation reactions can entail up to fivefold variation in how much soil organic C is oxidized per unit permanganate reduced. Without determining final reduction state of Mn and the initial and final oxidation states of C, the amount of C oxidized cannot be calculated. Unless a concrete understanding of the reduction and oxidation half-reactions is achieved, an alternative expression of permanganate reactivity of a soil sample (i.e., not mg C kg−1 soil) is needed.