正值空间过程的最佳预测:非对称功率发散损失

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Alan R. Pearse, Noel Cressie, David Gunawan
{"title":"正值空间过程的最佳预测:非对称功率发散损失","authors":"Alan R. Pearse,&nbsp;Noel Cressie,&nbsp;David Gunawan","doi":"10.1016/j.spasta.2024.100829","DOIUrl":null,"url":null,"abstract":"<div><p>This article studies the use of asymmetric loss functions for the optimal prediction of positive-valued spatial processes. We focus on the family of power-divergence loss functions with properties such as continuity, convexity, connections to well known divergence measures, and the ability to control the asymmetry and behaviour of the loss function via a power parameter. The properties of power-divergence loss functions, optimal power-divergence (OPD) spatial predictors, and related measures of uncertainty quantification are studied. In addition, we examine in general the notion of asymmetry in loss functions defined for positive-valued spatial processes and define an asymmetry measure, which we apply to the family of power-divergence loss functions and other common loss functions. The paper concludes with a simulation study comparing the optimal power-divergence predictor to predictors derived from other common loss functions. Finally, we illustrate OPD spatial prediction on a dataset of zinc measurements in the soil of a floodplain of the Meuse River, Netherlands.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675324000204/pdfft?md5=871aab873ba22ac88102220b2fa98a6a&pid=1-s2.0-S2211675324000204-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal prediction of positive-valued spatial processes: Asymmetric power-divergence loss\",\"authors\":\"Alan R. Pearse,&nbsp;Noel Cressie,&nbsp;David Gunawan\",\"doi\":\"10.1016/j.spasta.2024.100829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article studies the use of asymmetric loss functions for the optimal prediction of positive-valued spatial processes. We focus on the family of power-divergence loss functions with properties such as continuity, convexity, connections to well known divergence measures, and the ability to control the asymmetry and behaviour of the loss function via a power parameter. The properties of power-divergence loss functions, optimal power-divergence (OPD) spatial predictors, and related measures of uncertainty quantification are studied. In addition, we examine in general the notion of asymmetry in loss functions defined for positive-valued spatial processes and define an asymmetry measure, which we apply to the family of power-divergence loss functions and other common loss functions. The paper concludes with a simulation study comparing the optimal power-divergence predictor to predictors derived from other common loss functions. Finally, we illustrate OPD spatial prediction on a dataset of zinc measurements in the soil of a floodplain of the Meuse River, Netherlands.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000204/pdfft?md5=871aab873ba22ac88102220b2fa98a6a&pid=1-s2.0-S2211675324000204-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000204\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000204","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究利用非对称损失函数对正值空间过程进行优化预测。我们将重点放在幂发散损失函数系列上,这些函数具有连续性、凸性、与众所周知的发散度量之间的联系,以及通过幂参数控制损失函数的非对称性和行为的能力。我们研究了幂级数-发散损失函数、最优幂级数-发散(OPD)空间预测器以及相关不确定性量化指标的特性。此外,我们从总体上研究了为正值空间过程定义的损失函数中的不对称概念,并定义了一种不对称度量,将其应用于幂发散损失函数系列和其他常见损失函数。本文最后通过模拟研究,将最优幂发散预测器与其他常见损失函数得出的预测器进行了比较。最后,我们在荷兰默兹河洪泛区土壤中的锌测量数据集上对 OPD 空间预测进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal prediction of positive-valued spatial processes: Asymmetric power-divergence loss

This article studies the use of asymmetric loss functions for the optimal prediction of positive-valued spatial processes. We focus on the family of power-divergence loss functions with properties such as continuity, convexity, connections to well known divergence measures, and the ability to control the asymmetry and behaviour of the loss function via a power parameter. The properties of power-divergence loss functions, optimal power-divergence (OPD) spatial predictors, and related measures of uncertainty quantification are studied. In addition, we examine in general the notion of asymmetry in loss functions defined for positive-valued spatial processes and define an asymmetry measure, which we apply to the family of power-divergence loss functions and other common loss functions. The paper concludes with a simulation study comparing the optimal power-divergence predictor to predictors derived from other common loss functions. Finally, we illustrate OPD spatial prediction on a dataset of zinc measurements in the soil of a floodplain of the Meuse River, Netherlands.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信