{"title":"清洁 PDI-1 SQ:通过重新设计脉冲序列抑制二维质子检测 INADEQUATE 光谱中的 HSQC 伪影","authors":"Justinas Sakas , Dušan Uhrín , Ole W. Sørensen","doi":"10.1016/j.jmr.2024.107674","DOIUrl":null,"url":null,"abstract":"<div><p>Proton-detected INADEQUATE NMR experiments are widely used for structure elucidation of small molecules, in particular the implementations that display <sup>13</sup>C single-quantum rather than double-quantum frequencies in the indirect dimension of 2D spectra. But unfortunately, such spectra in addition to the desired <sup>1</sup>H–<sup>13</sup>C two-bond correlations also contain HSQC artifacts of comparable magnitude. The redesigned versatile experiment presented in this paper requires no compromise based on different <sup>13</sup>C multiplicities and suppresses the HSQC artifacts that are a source of possible spectral misinterpretation. Demonstration of the new method is shown by applications to typical small molecules of different complexity.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"362 ","pages":"Article 107674"},"PeriodicalIF":2.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clean PDI-1 SQ: Suppression of HSQC artifacts in 2D proton-detected INADEQUATE spectra by pulse sequence redesign\",\"authors\":\"Justinas Sakas , Dušan Uhrín , Ole W. Sørensen\",\"doi\":\"10.1016/j.jmr.2024.107674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proton-detected INADEQUATE NMR experiments are widely used for structure elucidation of small molecules, in particular the implementations that display <sup>13</sup>C single-quantum rather than double-quantum frequencies in the indirect dimension of 2D spectra. But unfortunately, such spectra in addition to the desired <sup>1</sup>H–<sup>13</sup>C two-bond correlations also contain HSQC artifacts of comparable magnitude. The redesigned versatile experiment presented in this paper requires no compromise based on different <sup>13</sup>C multiplicities and suppresses the HSQC artifacts that are a source of possible spectral misinterpretation. Demonstration of the new method is shown by applications to typical small molecules of different complexity.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"362 \",\"pages\":\"Article 107674\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780724000582\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000582","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Clean PDI-1 SQ: Suppression of HSQC artifacts in 2D proton-detected INADEQUATE spectra by pulse sequence redesign
Proton-detected INADEQUATE NMR experiments are widely used for structure elucidation of small molecules, in particular the implementations that display 13C single-quantum rather than double-quantum frequencies in the indirect dimension of 2D spectra. But unfortunately, such spectra in addition to the desired 1H–13C two-bond correlations also contain HSQC artifacts of comparable magnitude. The redesigned versatile experiment presented in this paper requires no compromise based on different 13C multiplicities and suppresses the HSQC artifacts that are a source of possible spectral misinterpretation. Demonstration of the new method is shown by applications to typical small molecules of different complexity.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.