通过 400 纳米紫外光激发提高金属氧化物半导体化学电阻器的室温气体传感性能

IF 6.5 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Suporna Paul , Emily Resendiz Mendoza , Dung Thi Hanh To , Thomas F. Stahovich , Jennifer Schaefer , Nosang V. Myung
{"title":"通过 400 纳米紫外光激发提高金属氧化物半导体化学电阻器的室温气体传感性能","authors":"Suporna Paul ,&nbsp;Emily Resendiz Mendoza ,&nbsp;Dung Thi Hanh To ,&nbsp;Thomas F. Stahovich ,&nbsp;Jennifer Schaefer ,&nbsp;Nosang V. Myung","doi":"10.1016/j.snr.2024.100194","DOIUrl":null,"url":null,"abstract":"<div><p>One of the most significant drawbacks of metal oxide (MOS) based chemiresistive gas sensors is the requirement of high operating temperature (250–450 °C), which results in significant power consumption and shorter lifetime. To develop room temperature (21±2 °C) MOS chemiresistive gas sensors, the sensing performance of different MOS nanostructures (i.e.<em>,</em> tin (IV) oxide (SnO<sub>2</sub>) nanoparticles (NPs), indium (III) oxide (In<sub>2</sub>O<sub>3</sub>) NPs, zinc oxide (ZnO) NPs, tungsten trioxide (WO<sub>3</sub>) NPs, copper oxide (CuO) nanotubes (NTs), and indium tin oxide (In<sub>90</sub>Sn<sub>10</sub>O<sub>3</sub> (ITO)) NPs) were systematically investigated toward different toxic industrial chemicals (TICs) (i.e.<em>,</em> nitrogen dioxide (NO<sub>2</sub>), ammonia (NH<sub>3</sub>), hydrogen sulfide (H<sub>2</sub>S), carbon monoxide (CO), sulfur dioxide (SO<sub>2</sub>) and volatile organic compounds (VOCs) (i.e.<em>,</em> acetone (C<sub>3</sub>H<sub>6</sub>O), toluene (C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub>), ethylbenzene (C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>CH<sub>3</sub>), and p-xylene (C<sub>6</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>)) in the presence and absence of 400 nm UV light illumination.</p><p>Sensing performance enhancement through photoexcitation is strongly dependent on the target analytes. Under 400 nm UV photoexcitation at 76.0 mW/cm<sup>2</sup> intensity, room temperature (21±2 °C) NO<sub>2</sub> sensing was readily achieved where SnO<sub>2</sub> NPs exhibited the highest sensor response (<em>S</em> = 474.4 toward 10 ppm<sub>m</sub> (parts per million by mass)) with good recovery followed by ZnO NPs &gt; In<sub>2</sub>O<sub>3</sub> NPs &gt; ITO NPs. Meanwhile, indirect bandgap n-type WO<sub>3</sub> NPs showed limited NO<sub>2</sub> sensing performance under illumination, whereas p-type CuO NTs showed relatively good sensing response. The most significant improvements in SnO<sub>2</sub> compared to other MOS nanoparticles might be attributed to the highest number of photogeneration electrons, which rapidly reacted with adsorbed <span><math><mrow><mi>N</mi><msubsup><mi>O</mi><mn>2</mn><mo>−</mo></msubsup></mrow></math></span> species to enhance the reaction kinetics. WO<sub>3</sub> NPs showed a unique sensing response toward aromatic compounds (e.g., ethylbenzene and p-xylene) under UV illumination, where maximum sensitivity was achieved under 36 mW/cm<sup>2</sup> irradiation. Changing light intensity from 0.0 to 36.4 mW/cm<sup>2</sup>, WO<sub>3</sub> showed 15.4-fold and 6.3-fold enhancement in sensing response toward 25 ppm<sub>m</sub> ethylbenzene and 100 ppm<sub>m</sub> p-xylene, respectively. 400 nm optical excitation has a limited effect on the sensing performance toward CO, SO<sub>2,</sub> toluene, and acetone.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"7 ","pages":"Article 100194"},"PeriodicalIF":6.5000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000109/pdfft?md5=0eeb26cc61976edbc08e73fef27a62af&pid=1-s2.0-S2666053924000109-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing room-temperature gas sensing performance of metal oxide semiconductor chemiresistors through 400 nm UV photoexcitation\",\"authors\":\"Suporna Paul ,&nbsp;Emily Resendiz Mendoza ,&nbsp;Dung Thi Hanh To ,&nbsp;Thomas F. Stahovich ,&nbsp;Jennifer Schaefer ,&nbsp;Nosang V. Myung\",\"doi\":\"10.1016/j.snr.2024.100194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>One of the most significant drawbacks of metal oxide (MOS) based chemiresistive gas sensors is the requirement of high operating temperature (250–450 °C), which results in significant power consumption and shorter lifetime. To develop room temperature (21±2 °C) MOS chemiresistive gas sensors, the sensing performance of different MOS nanostructures (i.e.<em>,</em> tin (IV) oxide (SnO<sub>2</sub>) nanoparticles (NPs), indium (III) oxide (In<sub>2</sub>O<sub>3</sub>) NPs, zinc oxide (ZnO) NPs, tungsten trioxide (WO<sub>3</sub>) NPs, copper oxide (CuO) nanotubes (NTs), and indium tin oxide (In<sub>90</sub>Sn<sub>10</sub>O<sub>3</sub> (ITO)) NPs) were systematically investigated toward different toxic industrial chemicals (TICs) (i.e.<em>,</em> nitrogen dioxide (NO<sub>2</sub>), ammonia (NH<sub>3</sub>), hydrogen sulfide (H<sub>2</sub>S), carbon monoxide (CO), sulfur dioxide (SO<sub>2</sub>) and volatile organic compounds (VOCs) (i.e.<em>,</em> acetone (C<sub>3</sub>H<sub>6</sub>O), toluene (C<sub>6</sub>H<sub>5</sub>CH<sub>3</sub>), ethylbenzene (C<sub>6</sub>H<sub>5</sub>CH<sub>2</sub>CH<sub>3</sub>), and p-xylene (C<sub>6</sub>H<sub>4</sub>(CH<sub>3</sub>)<sub>2</sub>)) in the presence and absence of 400 nm UV light illumination.</p><p>Sensing performance enhancement through photoexcitation is strongly dependent on the target analytes. Under 400 nm UV photoexcitation at 76.0 mW/cm<sup>2</sup> intensity, room temperature (21±2 °C) NO<sub>2</sub> sensing was readily achieved where SnO<sub>2</sub> NPs exhibited the highest sensor response (<em>S</em> = 474.4 toward 10 ppm<sub>m</sub> (parts per million by mass)) with good recovery followed by ZnO NPs &gt; In<sub>2</sub>O<sub>3</sub> NPs &gt; ITO NPs. Meanwhile, indirect bandgap n-type WO<sub>3</sub> NPs showed limited NO<sub>2</sub> sensing performance under illumination, whereas p-type CuO NTs showed relatively good sensing response. The most significant improvements in SnO<sub>2</sub> compared to other MOS nanoparticles might be attributed to the highest number of photogeneration electrons, which rapidly reacted with adsorbed <span><math><mrow><mi>N</mi><msubsup><mi>O</mi><mn>2</mn><mo>−</mo></msubsup></mrow></math></span> species to enhance the reaction kinetics. WO<sub>3</sub> NPs showed a unique sensing response toward aromatic compounds (e.g., ethylbenzene and p-xylene) under UV illumination, where maximum sensitivity was achieved under 36 mW/cm<sup>2</sup> irradiation. Changing light intensity from 0.0 to 36.4 mW/cm<sup>2</sup>, WO<sub>3</sub> showed 15.4-fold and 6.3-fold enhancement in sensing response toward 25 ppm<sub>m</sub> ethylbenzene and 100 ppm<sub>m</sub> p-xylene, respectively. 400 nm optical excitation has a limited effect on the sensing performance toward CO, SO<sub>2,</sub> toluene, and acetone.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"7 \",\"pages\":\"Article 100194\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000109/pdfft?md5=0eeb26cc61976edbc08e73fef27a62af&pid=1-s2.0-S2666053924000109-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

基于金属氧化物(MOS)的化学电阻式气体传感器的最大缺点之一是需要较高的工作温度(250-450 °C),从而导致功耗大、寿命短。为了开发室温(21±2 °C)MOS 化学电阻式气体传感器,我们系统地研究了不同 MOS 纳米结构(即锡 (IV) 氧化物 (SnO2) 纳米粒子 (NPs)、铟 (III) 氧化物 (In2O3) NPs、氧化锌 (ZnO) NPs、三氧化钨 (WO3) NPs、氧化铜 (CuO) 纳米管 (NTs) 和铟锡氧化物 (In90Sn10O3 (ITO)) NPs)的传感性能。对不同的有毒工业化学品(TIC)(即二氧化氮(NO2)、氨(NH3)、硫化氢(H2S)、一氧化碳(CO)、二氧化硫(SO2)和挥发性有机化合物(VOC)(即通过光激发提高传感性能与目标分析物密切相关。在强度为 76.0 mW/cm2 的 400 nm 紫外光激发下,很容易实现室温(21±2 °C)下的二氧化氮传感,其中 SnO2 NPs 表现出最高的传感器响应(S = 474.4 向 10 ppmm(质量分数))和良好的回收率,其次是 ZnO NPs > In2O3 NPs > ITO NPs。同时,间接带隙 n 型 WO3 NPs 在光照下的二氧化氮传感性能有限,而 p 型 CuO NTs 的传感响应相对较好。与其他 MOS 纳米粒子相比,SnO2 的改进最为明显,这可能是由于其光生成电子的数量最多,能迅速与吸附的 NO2- 物种发生反应,从而增强了反应动力学。在紫外线照射下,WO3 NPs 对芳香族化合物(如乙苯和对二甲苯)显示出独特的传感响应,在 36 mW/cm2 的照射下达到最大灵敏度。将光照强度从 0.0 mW/cm2 提高到 36.4 mW/cm2,WO3 对 25 ppmm 乙苯和 100 ppmm 对二甲苯的感应响应分别提高了 15.4 倍和 6.3 倍。400 nm 的光激发对 CO、SO2、甲苯和丙酮的传感性能影响有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancing room-temperature gas sensing performance of metal oxide semiconductor chemiresistors through 400 nm UV photoexcitation

Enhancing room-temperature gas sensing performance of metal oxide semiconductor chemiresistors through 400 nm UV photoexcitation

One of the most significant drawbacks of metal oxide (MOS) based chemiresistive gas sensors is the requirement of high operating temperature (250–450 °C), which results in significant power consumption and shorter lifetime. To develop room temperature (21±2 °C) MOS chemiresistive gas sensors, the sensing performance of different MOS nanostructures (i.e., tin (IV) oxide (SnO2) nanoparticles (NPs), indium (III) oxide (In2O3) NPs, zinc oxide (ZnO) NPs, tungsten trioxide (WO3) NPs, copper oxide (CuO) nanotubes (NTs), and indium tin oxide (In90Sn10O3 (ITO)) NPs) were systematically investigated toward different toxic industrial chemicals (TICs) (i.e., nitrogen dioxide (NO2), ammonia (NH3), hydrogen sulfide (H2S), carbon monoxide (CO), sulfur dioxide (SO2) and volatile organic compounds (VOCs) (i.e., acetone (C3H6O), toluene (C6H5CH3), ethylbenzene (C6H5CH2CH3), and p-xylene (C6H4(CH3)2)) in the presence and absence of 400 nm UV light illumination.

Sensing performance enhancement through photoexcitation is strongly dependent on the target analytes. Under 400 nm UV photoexcitation at 76.0 mW/cm2 intensity, room temperature (21±2 °C) NO2 sensing was readily achieved where SnO2 NPs exhibited the highest sensor response (S = 474.4 toward 10 ppmm (parts per million by mass)) with good recovery followed by ZnO NPs > In2O3 NPs > ITO NPs. Meanwhile, indirect bandgap n-type WO3 NPs showed limited NO2 sensing performance under illumination, whereas p-type CuO NTs showed relatively good sensing response. The most significant improvements in SnO2 compared to other MOS nanoparticles might be attributed to the highest number of photogeneration electrons, which rapidly reacted with adsorbed NO2 species to enhance the reaction kinetics. WO3 NPs showed a unique sensing response toward aromatic compounds (e.g., ethylbenzene and p-xylene) under UV illumination, where maximum sensitivity was achieved under 36 mW/cm2 irradiation. Changing light intensity from 0.0 to 36.4 mW/cm2, WO3 showed 15.4-fold and 6.3-fold enhancement in sensing response toward 25 ppmm ethylbenzene and 100 ppmm p-xylene, respectively. 400 nm optical excitation has a limited effect on the sensing performance toward CO, SO2, toluene, and acetone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
60
审稿时长
49 days
期刊介绍: Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications. For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信