由八种尿蛋白组成的候选小组显示了早期诊断和评估 1 型糖尿病肾病风险的潜力

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Jeremy Altman , Shan Bai , Sharad Purohit , John White , Dennis Steed , Su Liu , Diane Hopkins , Jin-Xiong She , Ashok Sharma , Wenbo Zhi
{"title":"由八种尿蛋白组成的候选小组显示了早期诊断和评估 1 型糖尿病肾病风险的潜力","authors":"Jeremy Altman ,&nbsp;Shan Bai ,&nbsp;Sharad Purohit ,&nbsp;John White ,&nbsp;Dennis Steed ,&nbsp;Su Liu ,&nbsp;Diane Hopkins ,&nbsp;Jin-Xiong She ,&nbsp;Ashok Sharma ,&nbsp;Wenbo Zhi","doi":"10.1016/j.jprot.2024.105167","DOIUrl":null,"url":null,"abstract":"<div><p>Diabetic kidney disease (DKD) poses a significant health challenge for individuals with diabetes. At its initial stages, DKD often presents asymptomatically, and the standard for non-invasive diagnosis, the albumin-creatinine ratio (ACR), employs discrete categorizations (normal, microalbuminuria, macroalbuminuria) with limitations in sensitivity and specificity across diverse population cohorts. Single biomarker reliance further restricts the predictive value in clinical settings. Given the escalating prevalence of diabetes, our study uses proteomic technologies to identify novel urinary proteins as supplementary DKD biomarkers. A total of 158 T1D subjects provided urine samples, with 28 (15 DKD; 13 non-DKD) used in the discovery stage and 131 (45 DKD; 40 pDKD; 46 non-DKD) used in the confirmation. We identified eight proteins (A1BG, AMBP, AZGP1, BTD, RBP4, ORM2, GM2A, and PGCP), all of which demonstrated excellent area-under-the-curve (AUC) values (0.959 to 0.995) in distinguishing DKD from non-DKD. Furthermore, this multi-marker panel successfully segregated the most ambiguous group (microalbuminuria) into three distinct clusters, with 80% of subjects aligning either as DKD or non-DKD. The remaining 20% exhibited continued uncertainty. Overall, the use of these candidate urinary proteins allowed for the better classification of DKD and offered potential for significant improvements in the early identification of DKD in T1D populations.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A candidate panel of eight urinary proteins shows potential of early diagnosis and risk assessment for diabetic kidney disease in type 1 diabetes\",\"authors\":\"Jeremy Altman ,&nbsp;Shan Bai ,&nbsp;Sharad Purohit ,&nbsp;John White ,&nbsp;Dennis Steed ,&nbsp;Su Liu ,&nbsp;Diane Hopkins ,&nbsp;Jin-Xiong She ,&nbsp;Ashok Sharma ,&nbsp;Wenbo Zhi\",\"doi\":\"10.1016/j.jprot.2024.105167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Diabetic kidney disease (DKD) poses a significant health challenge for individuals with diabetes. At its initial stages, DKD often presents asymptomatically, and the standard for non-invasive diagnosis, the albumin-creatinine ratio (ACR), employs discrete categorizations (normal, microalbuminuria, macroalbuminuria) with limitations in sensitivity and specificity across diverse population cohorts. Single biomarker reliance further restricts the predictive value in clinical settings. Given the escalating prevalence of diabetes, our study uses proteomic technologies to identify novel urinary proteins as supplementary DKD biomarkers. A total of 158 T1D subjects provided urine samples, with 28 (15 DKD; 13 non-DKD) used in the discovery stage and 131 (45 DKD; 40 pDKD; 46 non-DKD) used in the confirmation. We identified eight proteins (A1BG, AMBP, AZGP1, BTD, RBP4, ORM2, GM2A, and PGCP), all of which demonstrated excellent area-under-the-curve (AUC) values (0.959 to 0.995) in distinguishing DKD from non-DKD. Furthermore, this multi-marker panel successfully segregated the most ambiguous group (microalbuminuria) into three distinct clusters, with 80% of subjects aligning either as DKD or non-DKD. The remaining 20% exhibited continued uncertainty. Overall, the use of these candidate urinary proteins allowed for the better classification of DKD and offered potential for significant improvements in the early identification of DKD in T1D populations.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187439192400099X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187439192400099X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病肾病(DKD)对糖尿病患者的健康构成重大挑战。在初期阶段,DKD 通常表现为无症状,而无创诊断的标准--白蛋白-肌酐比值(ACR)--采用的是离散分类法(正常、微量白蛋白尿、大量白蛋白尿),在不同人群队列中的灵敏度和特异性都存在局限性。对单一生物标志物的依赖进一步限制了其在临床环境中的预测价值。鉴于糖尿病的发病率不断上升,我们的研究利用蛋白质组学技术鉴定新型尿液蛋白质作为补充性糖尿病生物标志物。共有 158 名 T1D 受试者提供了尿液样本,其中 28 例(15 例 DKD;13 例非 DKD)用于发现阶段,131 例(45 例 DKD;40 例 pDKD;46 例非 DKD)用于确认阶段。我们发现了 8 种蛋白质(A1BG、AMBP、AZGP1、BTD、RBP4、ORM2、GM2A 和 PGCP),所有这些蛋白质在区分 DKD 和非 DKD 方面都表现出了极佳的曲线下面积 (AUC) 值(0.959 至 0.995)。此外,该多标记物面板还成功地将最不明确的组别(微量白蛋白尿)分成了三个不同的群组,80% 的受试者被区分为 DKD 或非 DKD。其余 20% 的受试者仍表现出不确定性。总之,使用这些候选尿蛋白可以更好地对 DKD 进行分类,并为早期识别 T1D 群体中的 DKD 提供了显著的改进潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A candidate panel of eight urinary proteins shows potential of early diagnosis and risk assessment for diabetic kidney disease in type 1 diabetes

A candidate panel of eight urinary proteins shows potential of early diagnosis and risk assessment for diabetic kidney disease in type 1 diabetes

Diabetic kidney disease (DKD) poses a significant health challenge for individuals with diabetes. At its initial stages, DKD often presents asymptomatically, and the standard for non-invasive diagnosis, the albumin-creatinine ratio (ACR), employs discrete categorizations (normal, microalbuminuria, macroalbuminuria) with limitations in sensitivity and specificity across diverse population cohorts. Single biomarker reliance further restricts the predictive value in clinical settings. Given the escalating prevalence of diabetes, our study uses proteomic technologies to identify novel urinary proteins as supplementary DKD biomarkers. A total of 158 T1D subjects provided urine samples, with 28 (15 DKD; 13 non-DKD) used in the discovery stage and 131 (45 DKD; 40 pDKD; 46 non-DKD) used in the confirmation. We identified eight proteins (A1BG, AMBP, AZGP1, BTD, RBP4, ORM2, GM2A, and PGCP), all of which demonstrated excellent area-under-the-curve (AUC) values (0.959 to 0.995) in distinguishing DKD from non-DKD. Furthermore, this multi-marker panel successfully segregated the most ambiguous group (microalbuminuria) into three distinct clusters, with 80% of subjects aligning either as DKD or non-DKD. The remaining 20% exhibited continued uncertainty. Overall, the use of these candidate urinary proteins allowed for the better classification of DKD and offered potential for significant improvements in the early identification of DKD in T1D populations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信