用于高能锂金属电池的超薄固体电解质

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lufan Liu, Yongzheng Shi, Mengyue Liu, Qing Zhong, Yuqi Chen, Bingyang Li, Zhen Li, Tao Zhang, Hang Su, Jiaying Peng, Na Yang, Pengfei Wang, Adrian Fisher, Jin Niu, Feng Wang
{"title":"用于高能锂金属电池的超薄固体电解质","authors":"Lufan Liu,&nbsp;Yongzheng Shi,&nbsp;Mengyue Liu,&nbsp;Qing Zhong,&nbsp;Yuqi Chen,&nbsp;Bingyang Li,&nbsp;Zhen Li,&nbsp;Tao Zhang,&nbsp;Hang Su,&nbsp;Jiaying Peng,&nbsp;Na Yang,&nbsp;Pengfei Wang,&nbsp;Adrian Fisher,&nbsp;Jin Niu,&nbsp;Feng Wang","doi":"10.1002/adfm.202403154","DOIUrl":null,"url":null,"abstract":"<p>Solid-state electrolytes (SSEs) are key to unlocking the potential of lithium metal batteries (LMBs), but their high thickness (&gt;100 µm) due to poor mechanical properties limits energy density improvements. Herein, an ultrathin (≈5 µm) polymer SSE with a high Young's modulus (10.6 GPa), made from a polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) matrix and an ethylene diamine tetraacetic acid (EDTA) additive is proposed. By virtue of the electron-donating property, EDTA induces the conformation transformation of PVDF-HFP, enhancing the mechanical strength by a fine-grain strengthening mechanism. In addition, PVDF-HFP with <i>cis</i>-conformation shortens the pathway for Li<sup>+</sup>, promotes the Li<sup>+</sup> dissociation and immobilizes the anions of lithium salt, thus increasing the ionic conductivity (2.47 × 10<sup>−4</sup> S cm<sup>−1</sup>) and transfer number (0.59) of the electrolyte. Moreover, the electrolyte also possesses a wide voltage window (4.7 V) and good heat/flame resistance. The half cells and full cells with the electrolytes show good cycling and rate performance. Notably, a pouch cell based on the electrolyte exhibits impressive energy densities of 516 Wh kg<sup>−1</sup> and 1520 Wh L<sup>−1</sup> (excluding packages), showing great potential for practical use in LMBs.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 39","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Ultrathin Solid Electrolyte for High-Energy Lithium Metal Batteries\",\"authors\":\"Lufan Liu,&nbsp;Yongzheng Shi,&nbsp;Mengyue Liu,&nbsp;Qing Zhong,&nbsp;Yuqi Chen,&nbsp;Bingyang Li,&nbsp;Zhen Li,&nbsp;Tao Zhang,&nbsp;Hang Su,&nbsp;Jiaying Peng,&nbsp;Na Yang,&nbsp;Pengfei Wang,&nbsp;Adrian Fisher,&nbsp;Jin Niu,&nbsp;Feng Wang\",\"doi\":\"10.1002/adfm.202403154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Solid-state electrolytes (SSEs) are key to unlocking the potential of lithium metal batteries (LMBs), but their high thickness (&gt;100 µm) due to poor mechanical properties limits energy density improvements. Herein, an ultrathin (≈5 µm) polymer SSE with a high Young's modulus (10.6 GPa), made from a polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) matrix and an ethylene diamine tetraacetic acid (EDTA) additive is proposed. By virtue of the electron-donating property, EDTA induces the conformation transformation of PVDF-HFP, enhancing the mechanical strength by a fine-grain strengthening mechanism. In addition, PVDF-HFP with <i>cis</i>-conformation shortens the pathway for Li<sup>+</sup>, promotes the Li<sup>+</sup> dissociation and immobilizes the anions of lithium salt, thus increasing the ionic conductivity (2.47 × 10<sup>−4</sup> S cm<sup>−1</sup>) and transfer number (0.59) of the electrolyte. Moreover, the electrolyte also possesses a wide voltage window (4.7 V) and good heat/flame resistance. The half cells and full cells with the electrolytes show good cycling and rate performance. Notably, a pouch cell based on the electrolyte exhibits impressive energy densities of 516 Wh kg<sup>−1</sup> and 1520 Wh L<sup>−1</sup> (excluding packages), showing great potential for practical use in LMBs.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"34 39\",\"pages\":\"\"},\"PeriodicalIF\":19.0000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202403154\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202403154","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固态电解质(SSE)是释放锂金属电池(LMB)潜力的关键,但由于机械性能差,其厚度较高(100 µm),限制了能量密度的提高。本文提出了一种具有高杨氏模量(10.6 GPa)的超薄(≈5 µm)聚合物 SSE,由聚偏氟乙烯-六氟丙烯(PVDF-HFP)基体和乙二胺四乙酸(EDTA)添加剂制成。EDTA 具有电子捐赠特性,可诱导 PVDF-HFP 发生构象转变,通过细晶粒强化机制提高机械强度。此外,顺式构象的 PVDF-HFP 缩短了 Li+ 的通路,促进了 Li+ 的解离,并固定了锂盐的阴离子,从而提高了电解液的离子电导率(2.47 × 10-4 S cm-1)和转移数(0.59)。此外,该电解液还具有宽电压窗口(4.7 V)和良好的耐热/耐燃性。使用该电解质的半电池和全电池显示出良好的循环和速率性能。值得注意的是,基于该电解质的袋式电池的能量密度达到了惊人的 516 Wh kg-1 和 1520 Wh L-1(不包括封装),显示出在低压电池中实际应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Ultrathin Solid Electrolyte for High-Energy Lithium Metal Batteries

An Ultrathin Solid Electrolyte for High-Energy Lithium Metal Batteries

Solid-state electrolytes (SSEs) are key to unlocking the potential of lithium metal batteries (LMBs), but their high thickness (>100 µm) due to poor mechanical properties limits energy density improvements. Herein, an ultrathin (≈5 µm) polymer SSE with a high Young's modulus (10.6 GPa), made from a polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) matrix and an ethylene diamine tetraacetic acid (EDTA) additive is proposed. By virtue of the electron-donating property, EDTA induces the conformation transformation of PVDF-HFP, enhancing the mechanical strength by a fine-grain strengthening mechanism. In addition, PVDF-HFP with cis-conformation shortens the pathway for Li+, promotes the Li+ dissociation and immobilizes the anions of lithium salt, thus increasing the ionic conductivity (2.47 × 10−4 S cm−1) and transfer number (0.59) of the electrolyte. Moreover, the electrolyte also possesses a wide voltage window (4.7 V) and good heat/flame resistance. The half cells and full cells with the electrolytes show good cycling and rate performance. Notably, a pouch cell based on the electrolyte exhibits impressive energy densities of 516 Wh kg−1 and 1520 Wh L−1 (excluding packages), showing great potential for practical use in LMBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信