{"title":"右侧多变量连续四元数小波变换的一些不确定性原理","authors":"Manel Hleili","doi":"10.1007/s00006-024-01319-w","DOIUrl":null,"url":null,"abstract":"<div><p>For the right-sided multivariate continuous quaternion wavelet transform (CQWT), we analyse the concentration of this transform on sets of finite measure. We also establish an analogue of Heisenberg’s inequality for the quaternion wavelet transform. Finally, we extend local uncertainty principle for a set of finite measure to CQWT.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Uncertainty Principles for the Right-Sided Multivariate Continuous Quaternion Wavelet Transform\",\"authors\":\"Manel Hleili\",\"doi\":\"10.1007/s00006-024-01319-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For the right-sided multivariate continuous quaternion wavelet transform (CQWT), we analyse the concentration of this transform on sets of finite measure. We also establish an analogue of Heisenberg’s inequality for the quaternion wavelet transform. Finally, we extend local uncertainty principle for a set of finite measure to CQWT.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"34 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-024-01319-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01319-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Some Uncertainty Principles for the Right-Sided Multivariate Continuous Quaternion Wavelet Transform
For the right-sided multivariate continuous quaternion wavelet transform (CQWT), we analyse the concentration of this transform on sets of finite measure. We also establish an analogue of Heisenberg’s inequality for the quaternion wavelet transform. Finally, we extend local uncertainty principle for a set of finite measure to CQWT.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.