高阶奇异积分算子的 Lipschitz Norm 估计数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tania Rosa Gómez Santiesteban, Ricardo Abreu Blaya, Juan Carlos Hernández Gómez, José Luis Sánchez Santiesteban
{"title":"高阶奇异积分算子的 Lipschitz Norm 估计数","authors":"Tania Rosa Gómez Santiesteban,&nbsp;Ricardo Abreu Blaya,&nbsp;Juan Carlos Hernández Gómez,&nbsp;José Luis Sánchez Santiesteban","doi":"10.1007/s00006-024-01321-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Gamma \\)</span> be a <i>d</i>-summable surface in <span>\\(\\mathbb {R}^m\\)</span>, i.e., the boundary of a Jordan domain in <span>\\( \\mathbb {R}^m\\)</span>, such that <span>\\(\\int \\nolimits _{0}^{1}N_{\\Gamma }(\\tau )\\tau ^{d-1}\\textrm{d}\\tau &lt;+\\infty \\)</span>, where <span>\\(N_{\\Gamma }(\\tau )\\)</span> is the number of balls of radius <span>\\(\\tau \\)</span> needed to cover <span>\\(\\Gamma \\)</span> and <span>\\(m-1&lt;d&lt;m\\)</span>. In this paper, we consider a singular integral operator <span>\\(S_\\Gamma ^*\\)</span> associated with the iterated equation <span>\\({\\mathcal {D}}_{\\underline{x}}^k f=0\\)</span>, where <span>\\({\\mathcal {D}}_{\\underline{x}}\\)</span> stands for the Dirac operator constructed with the orthonormal basis of <span>\\( \\mathbb {R}^m\\)</span>. The fundamental result obtained establishes that if <span>\\(\\alpha &gt;\\frac{d}{m}\\)</span>, the operator <span>\\(S_\\Gamma ^*\\)</span> transforms functions of the higher order Lipschitz class <span>\\(\\text{ Lip }(\\Gamma , k +\\alpha )\\)</span> into functions of the class <span>\\(\\text{ Lip }(\\Gamma , k +\\beta )\\)</span>, for <span>\\(\\beta =\\frac{m\\alpha -d}{m-d}\\)</span>. In addition, an estimate for its norm is obtained.\n</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lipschitz Norm Estimate for a Higher Order Singular Integral Operator\",\"authors\":\"Tania Rosa Gómez Santiesteban,&nbsp;Ricardo Abreu Blaya,&nbsp;Juan Carlos Hernández Gómez,&nbsp;José Luis Sánchez Santiesteban\",\"doi\":\"10.1007/s00006-024-01321-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(\\\\Gamma \\\\)</span> be a <i>d</i>-summable surface in <span>\\\\(\\\\mathbb {R}^m\\\\)</span>, i.e., the boundary of a Jordan domain in <span>\\\\( \\\\mathbb {R}^m\\\\)</span>, such that <span>\\\\(\\\\int \\\\nolimits _{0}^{1}N_{\\\\Gamma }(\\\\tau )\\\\tau ^{d-1}\\\\textrm{d}\\\\tau &lt;+\\\\infty \\\\)</span>, where <span>\\\\(N_{\\\\Gamma }(\\\\tau )\\\\)</span> is the number of balls of radius <span>\\\\(\\\\tau \\\\)</span> needed to cover <span>\\\\(\\\\Gamma \\\\)</span> and <span>\\\\(m-1&lt;d&lt;m\\\\)</span>. In this paper, we consider a singular integral operator <span>\\\\(S_\\\\Gamma ^*\\\\)</span> associated with the iterated equation <span>\\\\({\\\\mathcal {D}}_{\\\\underline{x}}^k f=0\\\\)</span>, where <span>\\\\({\\\\mathcal {D}}_{\\\\underline{x}}\\\\)</span> stands for the Dirac operator constructed with the orthonormal basis of <span>\\\\( \\\\mathbb {R}^m\\\\)</span>. The fundamental result obtained establishes that if <span>\\\\(\\\\alpha &gt;\\\\frac{d}{m}\\\\)</span>, the operator <span>\\\\(S_\\\\Gamma ^*\\\\)</span> transforms functions of the higher order Lipschitz class <span>\\\\(\\\\text{ Lip }(\\\\Gamma , k +\\\\alpha )\\\\)</span> into functions of the class <span>\\\\(\\\\text{ Lip }(\\\\Gamma , k +\\\\beta )\\\\)</span>, for <span>\\\\(\\\\beta =\\\\frac{m\\\\alpha -d}{m-d}\\\\)</span>. In addition, an estimate for its norm is obtained.\\n</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-024-01321-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01321-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\Gamma \) 是 \(\mathbb {R}^m\) 中的一个可和曲面,即、的边界,使得(int nolimits _{0}^{1}N_{\Gamma }(\tau )\tau ^{d-1}\textrm{d}\tau <;+\其中,(N_{\Gamma }(\tau )\)是覆盖\(\Gamma \)和\(m-1<d<m\)所需的半径为\(\tau \)的球的个数。)在本文中,我们考虑与迭代方程 \({\mathcal {D}}_{\underline{x}}^k f=0\) 相关的奇异积分算子 \(S_\Gamma ^*\),其中 \({\mathcal {D}}_{\underline{x}} 代表用 \( \mathbb {R}^m\) 的正交基础构造的狄拉克算子。)得到的基本结果证明,如果 \(\alpha >;\算子(S_\Gamma ^*\)将高阶 Lipschitz 类 \(\text{ Lip }(\Gamma , k +\alpha )\)的函数转换成类 \(\text{ Lip }(\Gamma , k +\beta )\)的函数,对于 \(\beta =\frac{m\alpha -d}{m-d}\).此外,还得到了对其规范的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lipschitz Norm Estimate for a Higher Order Singular Integral Operator

Let \(\Gamma \) be a d-summable surface in \(\mathbb {R}^m\), i.e., the boundary of a Jordan domain in \( \mathbb {R}^m\), such that \(\int \nolimits _{0}^{1}N_{\Gamma }(\tau )\tau ^{d-1}\textrm{d}\tau <+\infty \), where \(N_{\Gamma }(\tau )\) is the number of balls of radius \(\tau \) needed to cover \(\Gamma \) and \(m-1<d<m\). In this paper, we consider a singular integral operator \(S_\Gamma ^*\) associated with the iterated equation \({\mathcal {D}}_{\underline{x}}^k f=0\), where \({\mathcal {D}}_{\underline{x}}\) stands for the Dirac operator constructed with the orthonormal basis of \( \mathbb {R}^m\). The fundamental result obtained establishes that if \(\alpha >\frac{d}{m}\), the operator \(S_\Gamma ^*\) transforms functions of the higher order Lipschitz class \(\text{ Lip }(\Gamma , k +\alpha )\) into functions of the class \(\text{ Lip }(\Gamma , k +\beta )\), for \(\beta =\frac{m\alpha -d}{m-d}\). In addition, an estimate for its norm is obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信