{"title":"关于克利福德代数同调的说明","authors":"Bikram Banerjee, Goutam Mukherjee","doi":"10.1007/s00006-024-01324-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this article we construct a cochain complex of a complex Clifford algebra with coefficients in itself in a combinatorial fashion and we call the corresponding cohomology by <i>Clifford cohomology.</i> We show that <i>Clifford cohomology</i> controls the deformation of a complex Clifford algebra and can classify them up to Morita equivalence. We also study Hochschild cohomology groups and formal deformations of the algebra of smooth sections of a complex Clifford algebra bundle over an even dimensional orientable Riemannian manifold <i>M</i> which admits a <span>\\(Spin^{c}\\)</span> structure.</p></div>","PeriodicalId":7330,"journal":{"name":"Advances in Applied Clifford Algebras","volume":"34 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Cohomology of Clifford Algebras\",\"authors\":\"Bikram Banerjee, Goutam Mukherjee\",\"doi\":\"10.1007/s00006-024-01324-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this article we construct a cochain complex of a complex Clifford algebra with coefficients in itself in a combinatorial fashion and we call the corresponding cohomology by <i>Clifford cohomology.</i> We show that <i>Clifford cohomology</i> controls the deformation of a complex Clifford algebra and can classify them up to Morita equivalence. We also study Hochschild cohomology groups and formal deformations of the algebra of smooth sections of a complex Clifford algebra bundle over an even dimensional orientable Riemannian manifold <i>M</i> which admits a <span>\\\\(Spin^{c}\\\\)</span> structure.</p></div>\",\"PeriodicalId\":7330,\"journal\":{\"name\":\"Advances in Applied Clifford Algebras\",\"volume\":\"34 3\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Clifford Algebras\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-024-01324-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Clifford Algebras","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01324-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
在这篇文章中,我们以组合的方式构建了一个复克利福德代数的共链复数,其系数本身就是复克利福德代数,我们称相应的同调为克利福德同调。我们证明,Clifford cohomology 控制着复 Clifford 代数的变形,并能对它们进行莫里塔等价分类。我们还研究了在偶数维可定向黎曼流形 M 上的复(Clifford)代数束的光滑截面代数的霍赫希尔德(Hochschild)同调群和形式变形,该流形承认一个 \(Spin^{c}\) 结构。
In this article we construct a cochain complex of a complex Clifford algebra with coefficients in itself in a combinatorial fashion and we call the corresponding cohomology by Clifford cohomology. We show that Clifford cohomology controls the deformation of a complex Clifford algebra and can classify them up to Morita equivalence. We also study Hochschild cohomology groups and formal deformations of the algebra of smooth sections of a complex Clifford algebra bundle over an even dimensional orientable Riemannian manifold M which admits a \(Spin^{c}\) structure.
期刊介绍:
Advances in Applied Clifford Algebras (AACA) publishes high-quality peer-reviewed research papers as well as expository and survey articles in the area of Clifford algebras and their applications to other branches of mathematics, physics, engineering, and related fields. The journal ensures rapid publication and is organized in six sections: Analysis, Differential Geometry and Dirac Operators, Mathematical Structures, Theoretical and Mathematical Physics, Applications, and Book Reviews.