关于非空交叉相交族的说明

IF 1 3区 数学 Q1 MATHEMATICS
Menglong Zhang, Tao Feng
{"title":"关于非空交叉相交族的说明","authors":"Menglong Zhang,&nbsp;Tao Feng","doi":"10.1016/j.ejc.2024.103968","DOIUrl":null,"url":null,"abstract":"<div><p>The families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></math></span> are said to be cross-intersecting if <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></mrow><mo>⩾</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>&lt;</mo><mi>j</mi><mo>⩽</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></math></span>. Cross-intersecting families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> are said to be <em>non-empty</em> if <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><mo>0̸</mo></mrow></math></span> for any <span><math><mrow><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi></mrow></math></span>. This paper shows that if <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></math></span> are non-empty cross-intersecting families with <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⩾</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⩾</mo><mo>⋯</mo><mo>⩾</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>⩾</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>|</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow><mo>⩽</mo><mo>max</mo><mrow><mo>{</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>−</mo><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>+</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><mspace></mspace><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></mfenced><mo>}</mo></mrow></mrow></math></span>. This solves a problem posed by Shi, Frankl and Qian recently. The extremal families attaining the upper bounds are also characterized.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on non-empty cross-intersecting families\",\"authors\":\"Menglong Zhang,&nbsp;Tao Feng\",\"doi\":\"10.1016/j.ejc.2024.103968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></math></span> are said to be cross-intersecting if <span><math><mrow><mrow><mo>|</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>|</mo></mrow><mo>⩾</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>&lt;</mo><mi>j</mi><mo>⩽</mo><mi>r</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></math></span>, <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>j</mi></mrow></msub></mrow></math></span>. Cross-intersecting families <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> are said to be <em>non-empty</em> if <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>≠</mo><mo>0̸</mo></mrow></math></span> for any <span><math><mrow><mn>1</mn><mo>⩽</mo><mi>i</mi><mo>⩽</mo><mi>r</mi></mrow></math></span>. This paper shows that if <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>⊆</mo><mfenced><mrow><mfrac><mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced></mrow></math></span> are non-empty cross-intersecting families with <span><math><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⩾</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⩾</mo><mo>⋯</mo><mo>⩾</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>⩾</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>+</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>|</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow><mo>⩽</mo><mo>max</mo><mrow><mo>{</mo><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>−</mo><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfrac></mrow></mfenced><mo>+</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><msub><mrow><mi>k</mi></mrow><mrow><mi>r</mi></mrow></msub></mrow></mfrac></mrow></mfenced><mo>,</mo><mspace></mspace><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>r</mi></mrow></msubsup><mfenced><mrow><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><msub><mrow><mi>k</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mn>1</mn></mrow></mfrac></mrow></mfenced><mo>}</mo></mrow></mrow></math></span>. This solves a problem posed by Shi, Frankl and Qian recently. The extremal families attaining the upper bounds are also characterized.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000532\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000532","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任意 1⩽i<j⩽r,且 Fi∈Fi, Fj∈Fj 的族 F1⊆[n]k1,F2⊆[n]k2,...,Fr⊆[n]kr,如果 |Fi∩Fj|⩾1 称为交叉族。如果对于任意 1⩽i⩽r,Fi≠0̸,则交叉族 F1,F2,...,Fr 称为非空。本文证明,如果 F1⊆[n]k1,F2⊆[n]k2,...,Fr⊆[n]kr 是 k1⩾k2⩾⋯⩾kr 和 n⩾k1+k2的非空交叉族,那么∑i=1r|Fi|⩽max{nk1-n-krk1+∑i=2rn-krki-kr,∑i=1rn-1ki-1}。这解决了 Shi、Frankl 和 Qian 最近提出的一个问题。达到上界的极值族也得到了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on non-empty cross-intersecting families

The families F1[n]k1,F2[n]k2,,Fr[n]kr are said to be cross-intersecting if |FiFj|1 for any 1i<jr and FiFi, FjFj. Cross-intersecting families F1,F2,,Fr are said to be non-empty if Fi for any 1ir. This paper shows that if F1[n]k1,F2[n]k2,,Fr[n]kr are non-empty cross-intersecting families with k1k2kr and nk1+k2, then i=1r|Fi|max{nk1nkrk1+i=2rnkrkikr,i=1rn1ki1}. This solves a problem posed by Shi, Frankl and Qian recently. The extremal families attaining the upper bounds are also characterized.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信