Su A Lee, Diego A. Rodriguez, Chad B. Paulk, Hans H. Stein
{"title":"玉米制粒和粒度减小可提高群居猪玉米-豆粕日粮的净能和纤维、蛋白质及脂肪的消化率","authors":"Su A Lee, Diego A. Rodriguez, Chad B. Paulk, Hans H. Stein","doi":"10.1186/s40104-024-01004-9","DOIUrl":null,"url":null,"abstract":"Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy. Pelleting may also reduce particle size of grain, but it is not known if there are interactions between particle size reduction and pelleting. The objective of this experiment was to test the hypothesis that particle size reduction and pelleting, separately or in combination, increase N balance, apparent total tract digestibility (ATTD) of fiber and fat, and net energy (NE) in corn-soybean meal diets fed to group-housed pigs. Six corn-soybean meal-based diets were used in a 3 × 2 factorial design with 3 particle sizes of corn (i.e., 700, 500, or 300 μm) and 2 diet forms (i.e., meal or pelleted). Pigs were allowed ad libitum access to feed and water. Twenty-four castrated male pigs (initial weight: 29.52 kg; standard diviation: 1.40) were allotted to the 6 diets using a 6 × 6 Latin square design with 6 calorimeter chambers (i.e., 4 pigs/chamber) and 6 periods. Oxygen consumption and CO2 and CH4 productions were measured during fed and fasting states and fecal and urine samples were collected. Regardless of particle size of corn, the ATTD of gross energy (GE), N, and acid-hydrolyzed ether extract (AEE), and the concentration of NE were greater (P < 0.05) in pelleted diets than in meal diets. Regardless of diet form, the ATTD of GE, N, and AEE, and the concentration of NE were increased (linear; P < 0.05) by reducing the particle size of corn, but the increase was greater in meal diets than in pelleted diets (interaction; P < 0.05). Both pelleting and reduction of corn particle size increased nutrient digestibility and NE, but increases were greater in meal diets than in pelleted diets.","PeriodicalId":14928,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"32 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pelleting and particle size reduction of corn increase net energy and digestibility of fiber, protein, and fat in corn-soybean meal diets fed to group-housed pigs\",\"authors\":\"Su A Lee, Diego A. Rodriguez, Chad B. Paulk, Hans H. Stein\",\"doi\":\"10.1186/s40104-024-01004-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy. Pelleting may also reduce particle size of grain, but it is not known if there are interactions between particle size reduction and pelleting. The objective of this experiment was to test the hypothesis that particle size reduction and pelleting, separately or in combination, increase N balance, apparent total tract digestibility (ATTD) of fiber and fat, and net energy (NE) in corn-soybean meal diets fed to group-housed pigs. Six corn-soybean meal-based diets were used in a 3 × 2 factorial design with 3 particle sizes of corn (i.e., 700, 500, or 300 μm) and 2 diet forms (i.e., meal or pelleted). Pigs were allowed ad libitum access to feed and water. Twenty-four castrated male pigs (initial weight: 29.52 kg; standard diviation: 1.40) were allotted to the 6 diets using a 6 × 6 Latin square design with 6 calorimeter chambers (i.e., 4 pigs/chamber) and 6 periods. Oxygen consumption and CO2 and CH4 productions were measured during fed and fasting states and fecal and urine samples were collected. Regardless of particle size of corn, the ATTD of gross energy (GE), N, and acid-hydrolyzed ether extract (AEE), and the concentration of NE were greater (P < 0.05) in pelleted diets than in meal diets. Regardless of diet form, the ATTD of GE, N, and AEE, and the concentration of NE were increased (linear; P < 0.05) by reducing the particle size of corn, but the increase was greater in meal diets than in pelleted diets (interaction; P < 0.05). Both pelleting and reduction of corn particle size increased nutrient digestibility and NE, but increases were greater in meal diets than in pelleted diets.\",\"PeriodicalId\":14928,\"journal\":{\"name\":\"Journal of Animal Science and Biotechnology\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Science and Biotechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s40104-024-01004-9\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s40104-024-01004-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Pelleting and particle size reduction of corn increase net energy and digestibility of fiber, protein, and fat in corn-soybean meal diets fed to group-housed pigs
Reduction of the particle size of corn increases energy digestibility and concentrations of digestible and metabolizable energy. Pelleting may also reduce particle size of grain, but it is not known if there are interactions between particle size reduction and pelleting. The objective of this experiment was to test the hypothesis that particle size reduction and pelleting, separately or in combination, increase N balance, apparent total tract digestibility (ATTD) of fiber and fat, and net energy (NE) in corn-soybean meal diets fed to group-housed pigs. Six corn-soybean meal-based diets were used in a 3 × 2 factorial design with 3 particle sizes of corn (i.e., 700, 500, or 300 μm) and 2 diet forms (i.e., meal or pelleted). Pigs were allowed ad libitum access to feed and water. Twenty-four castrated male pigs (initial weight: 29.52 kg; standard diviation: 1.40) were allotted to the 6 diets using a 6 × 6 Latin square design with 6 calorimeter chambers (i.e., 4 pigs/chamber) and 6 periods. Oxygen consumption and CO2 and CH4 productions were measured during fed and fasting states and fecal and urine samples were collected. Regardless of particle size of corn, the ATTD of gross energy (GE), N, and acid-hydrolyzed ether extract (AEE), and the concentration of NE were greater (P < 0.05) in pelleted diets than in meal diets. Regardless of diet form, the ATTD of GE, N, and AEE, and the concentration of NE were increased (linear; P < 0.05) by reducing the particle size of corn, but the increase was greater in meal diets than in pelleted diets (interaction; P < 0.05). Both pelleting and reduction of corn particle size increased nutrient digestibility and NE, but increases were greater in meal diets than in pelleted diets.
期刊介绍:
Journal of Animal Science and Biotechnology is an open access, peer-reviewed journal that encompasses all aspects of animal science and biotechnology. That includes domestic animal production, animal genetics and breeding, animal reproduction and physiology, animal nutrition and biochemistry, feed processing technology and bioevaluation, animal biotechnology, and meat science.