Nabeel Gnayem, Esther Magadley, Alaa Haj-Yahya, Samar Masalha, Ragheb Kabha, Alhan Abasi, Hani Barhom, Madhat Matar, Mohammed Attrash, Ibrahim Yehia
{"title":"研究不同光伏组件对温室农业光伏系统中黄瓜作物的影响:案例研究","authors":"Nabeel Gnayem, Esther Magadley, Alaa Haj-Yahya, Samar Masalha, Ragheb Kabha, Alhan Abasi, Hani Barhom, Madhat Matar, Mohammed Attrash, Ibrahim Yehia","doi":"10.1016/j.biosystemseng.2024.03.012","DOIUrl":null,"url":null,"abstract":"<div><p>Agrivoltaic systems, a fusion of agriculture and photovoltaic (PV) technology, have emerged as a sustainable solution to optimise land use by enabling simultaneous solar energy and agricultural harvesting. The experiments were conducted in a polytunnel greenhouse in Kfar Qara, Israel, deploying three types of semi-transparent solar PV panels—bifacial glass-encapsulated silicon, bifacial plastic-encapsulated silicon, and semi-transparent organic photovoltaics (OPVs) installed above the plant canopy. The impact of these PV treatments on cucumber crops was evaluated and juxtaposed against a control greenhouse with no panels, over the spring season from February to June 2022. Key growth and yield metrics were recorded during 17 harvests between April 10 and June 2, 2022. The findings revealed a negligible decline in crop yield across PV panel treatments compared to the control. Notably, the control and glass-encapsulated silicon PV treatments demonstrated an increase in yield, growth, and fruit quality. Moreover, the glass-encapsulated silicon PV panels outperformed the plastic-encapsulated and OPV module power conversion in the high heat and humidity of the greenhouse environment. This study accentuates the potential of integrating glass-encapsulated silicon PV panels in polytunnel greenhouses, heralding a promising avenue for bolstering agrivoltaic applications by ensuring a harmonious balance between agricultural yield and electrical energy production.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining the effect of different photovoltaic modules on cucumber crops in a greenhouse agrivoltaic system: A case study\",\"authors\":\"Nabeel Gnayem, Esther Magadley, Alaa Haj-Yahya, Samar Masalha, Ragheb Kabha, Alhan Abasi, Hani Barhom, Madhat Matar, Mohammed Attrash, Ibrahim Yehia\",\"doi\":\"10.1016/j.biosystemseng.2024.03.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Agrivoltaic systems, a fusion of agriculture and photovoltaic (PV) technology, have emerged as a sustainable solution to optimise land use by enabling simultaneous solar energy and agricultural harvesting. The experiments were conducted in a polytunnel greenhouse in Kfar Qara, Israel, deploying three types of semi-transparent solar PV panels—bifacial glass-encapsulated silicon, bifacial plastic-encapsulated silicon, and semi-transparent organic photovoltaics (OPVs) installed above the plant canopy. The impact of these PV treatments on cucumber crops was evaluated and juxtaposed against a control greenhouse with no panels, over the spring season from February to June 2022. Key growth and yield metrics were recorded during 17 harvests between April 10 and June 2, 2022. The findings revealed a negligible decline in crop yield across PV panel treatments compared to the control. Notably, the control and glass-encapsulated silicon PV treatments demonstrated an increase in yield, growth, and fruit quality. Moreover, the glass-encapsulated silicon PV panels outperformed the plastic-encapsulated and OPV module power conversion in the high heat and humidity of the greenhouse environment. This study accentuates the potential of integrating glass-encapsulated silicon PV panels in polytunnel greenhouses, heralding a promising avenue for bolstering agrivoltaic applications by ensuring a harmonious balance between agricultural yield and electrical energy production.</p></div>\",\"PeriodicalId\":9173,\"journal\":{\"name\":\"Biosystems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537511024000734\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024000734","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Examining the effect of different photovoltaic modules on cucumber crops in a greenhouse agrivoltaic system: A case study
Agrivoltaic systems, a fusion of agriculture and photovoltaic (PV) technology, have emerged as a sustainable solution to optimise land use by enabling simultaneous solar energy and agricultural harvesting. The experiments were conducted in a polytunnel greenhouse in Kfar Qara, Israel, deploying three types of semi-transparent solar PV panels—bifacial glass-encapsulated silicon, bifacial plastic-encapsulated silicon, and semi-transparent organic photovoltaics (OPVs) installed above the plant canopy. The impact of these PV treatments on cucumber crops was evaluated and juxtaposed against a control greenhouse with no panels, over the spring season from February to June 2022. Key growth and yield metrics were recorded during 17 harvests between April 10 and June 2, 2022. The findings revealed a negligible decline in crop yield across PV panel treatments compared to the control. Notably, the control and glass-encapsulated silicon PV treatments demonstrated an increase in yield, growth, and fruit quality. Moreover, the glass-encapsulated silicon PV panels outperformed the plastic-encapsulated and OPV module power conversion in the high heat and humidity of the greenhouse environment. This study accentuates the potential of integrating glass-encapsulated silicon PV panels in polytunnel greenhouses, heralding a promising avenue for bolstering agrivoltaic applications by ensuring a harmonious balance between agricultural yield and electrical energy production.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.