用黄玉/玄武岩混合材料增强的环氧树脂复合材料--利用机器学习技术进行表征和性能评估

IF 5.3 Q2 MATERIALS SCIENCE, COMPOSITES
Amith Gadagi , Baskaran Sivaprakash , Chandrashekar Adake , Umesh Deshannavar , Prasad G. Hegde , Santhosh P․ , Natarajan Rajamohan , Ahmed I. Osman
{"title":"用黄玉/玄武岩混合材料增强的环氧树脂复合材料--利用机器学习技术进行表征和性能评估","authors":"Amith Gadagi ,&nbsp;Baskaran Sivaprakash ,&nbsp;Chandrashekar Adake ,&nbsp;Umesh Deshannavar ,&nbsp;Prasad G. Hegde ,&nbsp;Santhosh P․ ,&nbsp;Natarajan Rajamohan ,&nbsp;Ahmed I. Osman","doi":"10.1016/j.jcomc.2024.100453","DOIUrl":null,"url":null,"abstract":"<div><p>Epoxy resins, prized for their versatile properties, are derived from bio-based materials, contributing to sustainability and eco-friendliness in both production and application. This study focuses on the application of gradient boosting machine learning techniques in the field of machining to predict the surface roughness and also the contour based experimental validation of the numerical results. The turning experiments, conducted via Taguchi's L<sub>27</sub> array, aimed to explore the effects of depth of cut, feed rate, and spindle speed. Higher spindle speeds, lower feed rates, and shallower cuts led to smoother surfaces in turned jute/basalt epoxy composites. Machine learning models (Gradient Boosting Machine, AdaBoost, and XGBoost) were then used to predict surface roughness. Amongst these, XGBoost outperformed GBM and AdaBoost, exhibiting maximum and average prediction errors of 3.78 % and 2.24 %, respectively. XGBoost accurately predicted 2D surface roughness contours that closely matched experimental contours for training and test cases. Taguchi's Orthogonal Matrix identified minimum surface roughness values as 0.773 μm (experimental), 0.800 μm (GBM), 0.880 μm (AdaBoost), and 0.774 μm (XGBoost). All were achieved at 1500 rpm spindle speed, 0.05 mm/rev feed rate, and 0.3 mm depth of cut.</p></div>","PeriodicalId":34525,"journal":{"name":"Composites Part C Open Access","volume":"14 ","pages":"Article 100453"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666682024000240/pdfft?md5=884d5903247fce133242ec33abdd5f06&pid=1-s2.0-S2666682024000240-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Epoxy composite reinforced with jute/basalt hybrid – Characterisation and performance evaluation using machine learning techniques\",\"authors\":\"Amith Gadagi ,&nbsp;Baskaran Sivaprakash ,&nbsp;Chandrashekar Adake ,&nbsp;Umesh Deshannavar ,&nbsp;Prasad G. Hegde ,&nbsp;Santhosh P․ ,&nbsp;Natarajan Rajamohan ,&nbsp;Ahmed I. Osman\",\"doi\":\"10.1016/j.jcomc.2024.100453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Epoxy resins, prized for their versatile properties, are derived from bio-based materials, contributing to sustainability and eco-friendliness in both production and application. This study focuses on the application of gradient boosting machine learning techniques in the field of machining to predict the surface roughness and also the contour based experimental validation of the numerical results. The turning experiments, conducted via Taguchi's L<sub>27</sub> array, aimed to explore the effects of depth of cut, feed rate, and spindle speed. Higher spindle speeds, lower feed rates, and shallower cuts led to smoother surfaces in turned jute/basalt epoxy composites. Machine learning models (Gradient Boosting Machine, AdaBoost, and XGBoost) were then used to predict surface roughness. Amongst these, XGBoost outperformed GBM and AdaBoost, exhibiting maximum and average prediction errors of 3.78 % and 2.24 %, respectively. XGBoost accurately predicted 2D surface roughness contours that closely matched experimental contours for training and test cases. Taguchi's Orthogonal Matrix identified minimum surface roughness values as 0.773 μm (experimental), 0.800 μm (GBM), 0.880 μm (AdaBoost), and 0.774 μm (XGBoost). All were achieved at 1500 rpm spindle speed, 0.05 mm/rev feed rate, and 0.3 mm depth of cut.</p></div>\",\"PeriodicalId\":34525,\"journal\":{\"name\":\"Composites Part C Open Access\",\"volume\":\"14 \",\"pages\":\"Article 100453\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000240/pdfft?md5=884d5903247fce133242ec33abdd5f06&pid=1-s2.0-S2666682024000240-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part C Open Access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666682024000240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part C Open Access","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666682024000240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

环氧树脂因其多用途特性而备受推崇,它源自生物基材料,在生产和应用中都有助于实现可持续性和生态友好性。本研究重点关注梯度提升机器学习技术在机械加工领域的应用,以预测表面粗糙度,并对数值结果进行基于轮廓的实验验证。车削实验通过田口 L27 阵列进行,旨在探索切削深度、进给率和主轴转速的影响。较高的主轴转速、较低的进给率和较浅的切削使车削后的黄铜/钴环氧树脂复合材料表面更加光滑。然后使用机器学习模型(梯度提升机、AdaBoost 和 XGBoost)来预测表面粗糙度。其中,XGBoost 的性能优于 GBM 和 AdaBoost,其最大和平均预测误差分别为 3.78 % 和 2.24 %。XGBoost 预测的二维表面粗糙度轮廓与训练和测试案例中的实验轮廓非常接近。田口正交矩阵确定的最小表面粗糙度值为 0.773 μm(实验值)、0.800 μm(GBM)、0.880 μm(AdaBoost)和 0.774 μm(XGBoost)。所有这些都是在主轴转速为 1500 rpm、进给速度为 0.05 mm/rev、切削深度为 0.3 mm 的条件下实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Epoxy composite reinforced with jute/basalt hybrid – Characterisation and performance evaluation using machine learning techniques

Epoxy composite reinforced with jute/basalt hybrid – Characterisation and performance evaluation using machine learning techniques

Epoxy resins, prized for their versatile properties, are derived from bio-based materials, contributing to sustainability and eco-friendliness in both production and application. This study focuses on the application of gradient boosting machine learning techniques in the field of machining to predict the surface roughness and also the contour based experimental validation of the numerical results. The turning experiments, conducted via Taguchi's L27 array, aimed to explore the effects of depth of cut, feed rate, and spindle speed. Higher spindle speeds, lower feed rates, and shallower cuts led to smoother surfaces in turned jute/basalt epoxy composites. Machine learning models (Gradient Boosting Machine, AdaBoost, and XGBoost) were then used to predict surface roughness. Amongst these, XGBoost outperformed GBM and AdaBoost, exhibiting maximum and average prediction errors of 3.78 % and 2.24 %, respectively. XGBoost accurately predicted 2D surface roughness contours that closely matched experimental contours for training and test cases. Taguchi's Orthogonal Matrix identified minimum surface roughness values as 0.773 μm (experimental), 0.800 μm (GBM), 0.880 μm (AdaBoost), and 0.774 μm (XGBoost). All were achieved at 1500 rpm spindle speed, 0.05 mm/rev feed rate, and 0.3 mm depth of cut.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part C Open Access
Composites Part C Open Access Engineering-Mechanical Engineering
CiteScore
8.60
自引率
2.40%
发文量
96
审稿时长
55 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信