{"title":"生物质供应链收集价格不确定情况下的资源分配和路线规划","authors":"Xiang Ting Wang , Jin Xin Cao , Ying Lv","doi":"10.1016/j.biosystemseng.2024.03.011","DOIUrl":null,"url":null,"abstract":"<div><p>The escalating severity of global warming has drawn worldwide attention to ecological problems. Nevertheless, with the introduction of environmental policies, biomass resources have been effectively developed as a renewable energy source. This paper investigates an advanced biomass supply chain design wherein biomass resources are initially converted into bio-oil through widely distributed fast pyrolysis facilities, and are subsequently transported to a centralised biorefinery for further refining into biofuels. This novel biomass supply chain addressed three key issues: (1) The number of fast pyrolysis facilities, (2) The allocation of resources, and (3) The routes of resources transport. In respect of these problems, a two-stage stochastic mixed integer programming model is established to minimise the total cost of the biomass supply chain considering the uncertainty collection price of fast pyrolysis facilities. A hybrid simulated annealing algorithm which incorporates the sample average approximation method is proposed to solve the stochastic model and is effectiveness for large-scale examples. Finally, a sensitivity analysis is performed using the proposed algorithm and the results show that the proposed stochastic model outperforms the deterministic model under uncertain collection price. The model allows optimising the biomass supply chain economic performances and minimise financial risk on investment by determining the fast pyrolysis facility locations, reasonable resource allocation and optimal transport routes under uncertain collection price.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource allocation and route planning under the collection price uncertainty for the biomass supply chain\",\"authors\":\"Xiang Ting Wang , Jin Xin Cao , Ying Lv\",\"doi\":\"10.1016/j.biosystemseng.2024.03.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The escalating severity of global warming has drawn worldwide attention to ecological problems. Nevertheless, with the introduction of environmental policies, biomass resources have been effectively developed as a renewable energy source. This paper investigates an advanced biomass supply chain design wherein biomass resources are initially converted into bio-oil through widely distributed fast pyrolysis facilities, and are subsequently transported to a centralised biorefinery for further refining into biofuels. This novel biomass supply chain addressed three key issues: (1) The number of fast pyrolysis facilities, (2) The allocation of resources, and (3) The routes of resources transport. In respect of these problems, a two-stage stochastic mixed integer programming model is established to minimise the total cost of the biomass supply chain considering the uncertainty collection price of fast pyrolysis facilities. A hybrid simulated annealing algorithm which incorporates the sample average approximation method is proposed to solve the stochastic model and is effectiveness for large-scale examples. Finally, a sensitivity analysis is performed using the proposed algorithm and the results show that the proposed stochastic model outperforms the deterministic model under uncertain collection price. The model allows optimising the biomass supply chain economic performances and minimise financial risk on investment by determining the fast pyrolysis facility locations, reasonable resource allocation and optimal transport routes under uncertain collection price.</p></div>\",\"PeriodicalId\":9173,\"journal\":{\"name\":\"Biosystems Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537511024000722\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024000722","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Resource allocation and route planning under the collection price uncertainty for the biomass supply chain
The escalating severity of global warming has drawn worldwide attention to ecological problems. Nevertheless, with the introduction of environmental policies, biomass resources have been effectively developed as a renewable energy source. This paper investigates an advanced biomass supply chain design wherein biomass resources are initially converted into bio-oil through widely distributed fast pyrolysis facilities, and are subsequently transported to a centralised biorefinery for further refining into biofuels. This novel biomass supply chain addressed three key issues: (1) The number of fast pyrolysis facilities, (2) The allocation of resources, and (3) The routes of resources transport. In respect of these problems, a two-stage stochastic mixed integer programming model is established to minimise the total cost of the biomass supply chain considering the uncertainty collection price of fast pyrolysis facilities. A hybrid simulated annealing algorithm which incorporates the sample average approximation method is proposed to solve the stochastic model and is effectiveness for large-scale examples. Finally, a sensitivity analysis is performed using the proposed algorithm and the results show that the proposed stochastic model outperforms the deterministic model under uncertain collection price. The model allows optimising the biomass supply chain economic performances and minimise financial risk on investment by determining the fast pyrolysis facility locations, reasonable resource allocation and optimal transport routes under uncertain collection price.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.