NoSimple:数据偏差评估指标

S. Rahardja, P. Fränti
{"title":"NoSimple:数据偏差评估指标","authors":"S. Rahardja, P. Fränti","doi":"10.1109/IMCOM60618.2024.10418419","DOIUrl":null,"url":null,"abstract":"Simple objects are defined as objects invariably correctly classified by all outlier detectors. Its presence impairs performance of binary classifiers such as ROC or F1 score. A large number of simple objects falsely improve performance of binary classifiers when evaluated by ROC or F1 score. This impairs reliability of classifier evaluation. This manuscript proposes evaluation without simple objects (NoSimple). NoSimple preprocesses data to factor in simple objects by removing the simple objects for the evaluation phase. Experiments with 30 realworld datasets demonstrate that NoSimple significantly reduced the average ROC of all classifiers by $0.04 \\sim 0.06$. NoSimple is most effective when the percentage of simple objects exceeds $30{\\% }$. By introducing a new method to reliably evaluate outlier classifiers, NoSimple has the potential to revolutionize evaluation metrics and has a multitude of applications in data science research.","PeriodicalId":518057,"journal":{"name":"2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"284 5","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NoSimple: Data Bias Evaluation Metrics\",\"authors\":\"S. Rahardja, P. Fränti\",\"doi\":\"10.1109/IMCOM60618.2024.10418419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simple objects are defined as objects invariably correctly classified by all outlier detectors. Its presence impairs performance of binary classifiers such as ROC or F1 score. A large number of simple objects falsely improve performance of binary classifiers when evaluated by ROC or F1 score. This impairs reliability of classifier evaluation. This manuscript proposes evaluation without simple objects (NoSimple). NoSimple preprocesses data to factor in simple objects by removing the simple objects for the evaluation phase. Experiments with 30 realworld datasets demonstrate that NoSimple significantly reduced the average ROC of all classifiers by $0.04 \\\\sim 0.06$. NoSimple is most effective when the percentage of simple objects exceeds $30{\\\\% }$. By introducing a new method to reliably evaluate outlier classifiers, NoSimple has the potential to revolutionize evaluation metrics and has a multitude of applications in data science research.\",\"PeriodicalId\":518057,\"journal\":{\"name\":\"2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"volume\":\"284 5\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCOM60618.2024.10418419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM60618.2024.10418419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简单对象是指所有离群点检测器都能正确分类的对象。它的存在会影响二元分类器的性能,如 ROC 或 F1 分数。在使用 ROC 或 F1 分数进行评估时,大量简单对象会错误地提高二元分类器的性能。这会损害分类器评估的可靠性。本手稿提出了不使用简单对象的评估方法(NoSimple)。NoSimple 对数据进行预处理,在评估阶段移除简单对象,以考虑简单对象的因素。使用 30 个真实世界数据集进行的实验表明,NoSimple 使所有分类器的平均 ROC 显著降低了 0.04 美元(或 0.06 美元)。当简单对象的比例超过 $30{\% }$ 时,NoSimple 的效果最佳。通过引入一种新方法来可靠地评估离群分类器,NoSimple 有可能彻底改变评估指标,并在数据科学研究中得到广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NoSimple: Data Bias Evaluation Metrics
Simple objects are defined as objects invariably correctly classified by all outlier detectors. Its presence impairs performance of binary classifiers such as ROC or F1 score. A large number of simple objects falsely improve performance of binary classifiers when evaluated by ROC or F1 score. This impairs reliability of classifier evaluation. This manuscript proposes evaluation without simple objects (NoSimple). NoSimple preprocesses data to factor in simple objects by removing the simple objects for the evaluation phase. Experiments with 30 realworld datasets demonstrate that NoSimple significantly reduced the average ROC of all classifiers by $0.04 \sim 0.06$. NoSimple is most effective when the percentage of simple objects exceeds $30{\% }$. By introducing a new method to reliably evaluate outlier classifiers, NoSimple has the potential to revolutionize evaluation metrics and has a multitude of applications in data science research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信