通过紧凑型模型辅助冲击电极设计控制 Resoswitch Squegging

Kevin H. Zheng, Qiutong Jin, Clark T.-C. Nguyen
{"title":"通过紧凑型模型辅助冲击电极设计控制 Resoswitch Squegging","authors":"Kevin H. Zheng, Qiutong Jin, Clark T.-C. Nguyen","doi":"10.1109/MEMS58180.2024.10439518","DOIUrl":null,"url":null,"abstract":"This paper demonstrates, via a novel compact model and experiments, that squegging in micromechanical resonant electrical switches (resoswitches) [1] is controllable via impact electrode design. The model captures the nonlinear dynamics of impact contact and predicts squegging. Unlike other numeric and finite-element (FEM)-based models, this physical parameter-based model has no convergence difficulties when simulating impact, accurately captures squegging, and runs within any circuit simulator with up to 100× simulation time improvement compared to commercial software. Matching of compact model simulations to measurements of a 1-kHz RF-powered micromechanical clock receiver [2] validate the model. Proper electrode design yields a 10× reduction in output jitter.","PeriodicalId":518439,"journal":{"name":"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"87 2","pages":"1071-1074"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resoswitch Squegging Control by Compact Model-Assisted Impact Electrode Design\",\"authors\":\"Kevin H. Zheng, Qiutong Jin, Clark T.-C. Nguyen\",\"doi\":\"10.1109/MEMS58180.2024.10439518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates, via a novel compact model and experiments, that squegging in micromechanical resonant electrical switches (resoswitches) [1] is controllable via impact electrode design. The model captures the nonlinear dynamics of impact contact and predicts squegging. Unlike other numeric and finite-element (FEM)-based models, this physical parameter-based model has no convergence difficulties when simulating impact, accurately captures squegging, and runs within any circuit simulator with up to 100× simulation time improvement compared to commercial software. Matching of compact model simulations to measurements of a 1-kHz RF-powered micromechanical clock receiver [2] validate the model. Proper electrode design yields a 10× reduction in output jitter.\",\"PeriodicalId\":518439,\"journal\":{\"name\":\"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"87 2\",\"pages\":\"1071-1074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMS58180.2024.10439518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS58180.2024.10439518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过一个新颖紧凑的模型和实验证明,微机械谐振电子开关(resoswitches)[1] 中的吱吱声可通过撞击电极设计进行控制。该模型捕捉了撞击接触的非线性动态,并预测了吱嘎现象。与其他基于数值和有限元(FEM)的模型不同,这种基于物理参数的模型在模拟冲击时没有收敛困难,能准确捕捉挠曲,并能在任何电路模拟器中运行,与商业软件相比,模拟时间最多可缩短 100 倍。紧凑型模型模拟与 1 kHz 射频供电微机械时钟接收器的测量结果[2]相匹配,验证了该模型。适当的电极设计使输出抖动降低了 10 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resoswitch Squegging Control by Compact Model-Assisted Impact Electrode Design
This paper demonstrates, via a novel compact model and experiments, that squegging in micromechanical resonant electrical switches (resoswitches) [1] is controllable via impact electrode design. The model captures the nonlinear dynamics of impact contact and predicts squegging. Unlike other numeric and finite-element (FEM)-based models, this physical parameter-based model has no convergence difficulties when simulating impact, accurately captures squegging, and runs within any circuit simulator with up to 100× simulation time improvement compared to commercial software. Matching of compact model simulations to measurements of a 1-kHz RF-powered micromechanical clock receiver [2] validate the model. Proper electrode design yields a 10× reduction in output jitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信