{"title":"通过紧凑型模型辅助冲击电极设计控制 Resoswitch Squegging","authors":"Kevin H. Zheng, Qiutong Jin, Clark T.-C. Nguyen","doi":"10.1109/MEMS58180.2024.10439518","DOIUrl":null,"url":null,"abstract":"This paper demonstrates, via a novel compact model and experiments, that squegging in micromechanical resonant electrical switches (resoswitches) [1] is controllable via impact electrode design. The model captures the nonlinear dynamics of impact contact and predicts squegging. Unlike other numeric and finite-element (FEM)-based models, this physical parameter-based model has no convergence difficulties when simulating impact, accurately captures squegging, and runs within any circuit simulator with up to 100× simulation time improvement compared to commercial software. Matching of compact model simulations to measurements of a 1-kHz RF-powered micromechanical clock receiver [2] validate the model. Proper electrode design yields a 10× reduction in output jitter.","PeriodicalId":518439,"journal":{"name":"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"87 2","pages":"1071-1074"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resoswitch Squegging Control by Compact Model-Assisted Impact Electrode Design\",\"authors\":\"Kevin H. Zheng, Qiutong Jin, Clark T.-C. Nguyen\",\"doi\":\"10.1109/MEMS58180.2024.10439518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates, via a novel compact model and experiments, that squegging in micromechanical resonant electrical switches (resoswitches) [1] is controllable via impact electrode design. The model captures the nonlinear dynamics of impact contact and predicts squegging. Unlike other numeric and finite-element (FEM)-based models, this physical parameter-based model has no convergence difficulties when simulating impact, accurately captures squegging, and runs within any circuit simulator with up to 100× simulation time improvement compared to commercial software. Matching of compact model simulations to measurements of a 1-kHz RF-powered micromechanical clock receiver [2] validate the model. Proper electrode design yields a 10× reduction in output jitter.\",\"PeriodicalId\":518439,\"journal\":{\"name\":\"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"87 2\",\"pages\":\"1071-1074\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMS58180.2024.10439518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 37th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMS58180.2024.10439518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Resoswitch Squegging Control by Compact Model-Assisted Impact Electrode Design
This paper demonstrates, via a novel compact model and experiments, that squegging in micromechanical resonant electrical switches (resoswitches) [1] is controllable via impact electrode design. The model captures the nonlinear dynamics of impact contact and predicts squegging. Unlike other numeric and finite-element (FEM)-based models, this physical parameter-based model has no convergence difficulties when simulating impact, accurately captures squegging, and runs within any circuit simulator with up to 100× simulation time improvement compared to commercial software. Matching of compact model simulations to measurements of a 1-kHz RF-powered micromechanical clock receiver [2] validate the model. Proper electrode design yields a 10× reduction in output jitter.