外生菌根真菌受欧洲生态区域边界的影响

IF 6.3 1区 环境科学与生态学 Q1 ECOLOGY
Guillaume Delhaye, Sietse van der Linde, David Bauman, C. David L. Orme, Laura M. Suz, Martin I. Bidartondo
{"title":"外生菌根真菌受欧洲生态区域边界的影响","authors":"Guillaume Delhaye,&nbsp;Sietse van der Linde,&nbsp;David Bauman,&nbsp;C. David L. Orme,&nbsp;Laura M. Suz,&nbsp;Martin I. Bidartondo","doi":"10.1111/geb.13837","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Ecoregions and the distance decay in community similarity are fundamental concepts in biogeography and conservation biology that are well supported across plants and animals, but not fungi. Here we test the relevance of these concepts for ectomycorrhizal (ECM) fungi in temperate and boreal regions.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Europe.</p>\n </section>\n \n <section>\n \n <h3> Time Period</h3>\n \n <p>2008–2015.</p>\n </section>\n \n <section>\n \n <h3> Major Taxa Studied</h3>\n \n <p>Ectomycorrhizal fungi.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We used a large dataset of ~24,000 ectomycorrhizas, assigned to 1350 operational taxonomic units, collected from 129 forest plots via a standardized protocol. We investigated the relevance of ecoregion delimitations for ECM fungi through complementary methodological approaches based on distance decay models, multivariate analyses and indicator species analyses. We then evaluated the effects of host tree and climate on the observed biogeographical distributions.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Ecoregions predict large-scale ECM fungal biodiversity patterns. This is partly explained by climate differences between ecoregions but independent from host tree distribution. Basidiomycetes in the orders Russulales and Atheliales and producing epigeous fruiting bodies, with potentially short-distance dispersal, show the best agreement with ecoregion boundaries. Host tree distribution and fungal abundance (as opposed to presence/absence only) are important to uncover biogeographical patterns in mycorrhizas.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>Ecoregions are useful units to investigate eco-evolutionary processes in mycorrhizal fungal communities and for conservation decision-making that includes fungi.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 6","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13837","citationCount":"0","resultStr":"{\"title\":\"Ectomycorrhizal fungi are influenced by ecoregion boundaries across Europe\",\"authors\":\"Guillaume Delhaye,&nbsp;Sietse van der Linde,&nbsp;David Bauman,&nbsp;C. David L. Orme,&nbsp;Laura M. Suz,&nbsp;Martin I. Bidartondo\",\"doi\":\"10.1111/geb.13837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Ecoregions and the distance decay in community similarity are fundamental concepts in biogeography and conservation biology that are well supported across plants and animals, but not fungi. Here we test the relevance of these concepts for ectomycorrhizal (ECM) fungi in temperate and boreal regions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Europe.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time Period</h3>\\n \\n <p>2008–2015.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major Taxa Studied</h3>\\n \\n <p>Ectomycorrhizal fungi.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We used a large dataset of ~24,000 ectomycorrhizas, assigned to 1350 operational taxonomic units, collected from 129 forest plots via a standardized protocol. We investigated the relevance of ecoregion delimitations for ECM fungi through complementary methodological approaches based on distance decay models, multivariate analyses and indicator species analyses. We then evaluated the effects of host tree and climate on the observed biogeographical distributions.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Ecoregions predict large-scale ECM fungal biodiversity patterns. This is partly explained by climate differences between ecoregions but independent from host tree distribution. Basidiomycetes in the orders Russulales and Atheliales and producing epigeous fruiting bodies, with potentially short-distance dispersal, show the best agreement with ecoregion boundaries. Host tree distribution and fungal abundance (as opposed to presence/absence only) are important to uncover biogeographical patterns in mycorrhizas.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>Ecoregions are useful units to investigate eco-evolutionary processes in mycorrhizal fungal communities and for conservation decision-making that includes fungi.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 6\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13837\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13837\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13837","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生态区和群落相似性的距离衰减是生物地理学和保护生物学中的基本概念,这些概念在植物和动物中得到了很好的支持,但在真菌中却没有得到支持。在这里,我们测试了这些概念与温带和寒带地区外生菌根真菌(ECM)的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ectomycorrhizal fungi are influenced by ecoregion boundaries across Europe

Ectomycorrhizal fungi are influenced by ecoregion boundaries across Europe

Aim

Ecoregions and the distance decay in community similarity are fundamental concepts in biogeography and conservation biology that are well supported across plants and animals, but not fungi. Here we test the relevance of these concepts for ectomycorrhizal (ECM) fungi in temperate and boreal regions.

Location

Europe.

Time Period

2008–2015.

Major Taxa Studied

Ectomycorrhizal fungi.

Methods

We used a large dataset of ~24,000 ectomycorrhizas, assigned to 1350 operational taxonomic units, collected from 129 forest plots via a standardized protocol. We investigated the relevance of ecoregion delimitations for ECM fungi through complementary methodological approaches based on distance decay models, multivariate analyses and indicator species analyses. We then evaluated the effects of host tree and climate on the observed biogeographical distributions.

Results

Ecoregions predict large-scale ECM fungal biodiversity patterns. This is partly explained by climate differences between ecoregions but independent from host tree distribution. Basidiomycetes in the orders Russulales and Atheliales and producing epigeous fruiting bodies, with potentially short-distance dispersal, show the best agreement with ecoregion boundaries. Host tree distribution and fungal abundance (as opposed to presence/absence only) are important to uncover biogeographical patterns in mycorrhizas.

Main Conclusions

Ecoregions are useful units to investigate eco-evolutionary processes in mycorrhizal fungal communities and for conservation decision-making that includes fungi.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Ecology and Biogeography
Global Ecology and Biogeography 环境科学-生态学
CiteScore
12.10
自引率
3.10%
发文量
170
审稿时长
3 months
期刊介绍: Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信