迪里希勒空间上的有界变化能力和索波列夫型不等式

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiangyun Xie, Yu Liu, Pengtao Li, Jizheng Huang
{"title":"迪里希勒空间上的有界变化能力和索波列夫型不等式","authors":"Xiangyun Xie, Yu Liu, Pengtao Li, Jizheng Huang","doi":"10.1515/anona-2023-0119","DOIUrl":null,"url":null,"abstract":"\n In this article, we consider the bounded variation capacity (BV capacity) and characterize the Sobolev-type inequalities related to BV functions in a general framework of strictly local Dirichlet spaces with a doubling measure via the BV capacity. Under a weak Bakry-Émery curvature-type condition, we give the connection between the Hausdorff measure and the Hausdorff capacity, and discover some capacitary inequalities and Maz’ya-Sobolev inequalities for BV functions. The De Giorgi characterization for total variation is also obtained with a quasi-Bakry-Émery curvature condition. It should be noted that the results in this article are proved if the Dirichlet space supports the weak \n \n \n \n \n (\n \n 1\n ,\n 2\n \n )\n \n \n \\left(1,2)\n \n -Poincaré inequality instead of the weak \n \n \n \n \n (\n \n 1\n ,\n 1\n \n )\n \n \n \\left(1,1)\n \n -Poincaré inequality compared with the results in the previous references.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The bounded variation capacity and Sobolev-type inequalities on Dirichlet spaces\",\"authors\":\"Xiangyun Xie, Yu Liu, Pengtao Li, Jizheng Huang\",\"doi\":\"10.1515/anona-2023-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this article, we consider the bounded variation capacity (BV capacity) and characterize the Sobolev-type inequalities related to BV functions in a general framework of strictly local Dirichlet spaces with a doubling measure via the BV capacity. Under a weak Bakry-Émery curvature-type condition, we give the connection between the Hausdorff measure and the Hausdorff capacity, and discover some capacitary inequalities and Maz’ya-Sobolev inequalities for BV functions. The De Giorgi characterization for total variation is also obtained with a quasi-Bakry-Émery curvature condition. It should be noted that the results in this article are proved if the Dirichlet space supports the weak \\n \\n \\n \\n \\n (\\n \\n 1\\n ,\\n 2\\n \\n )\\n \\n \\n \\\\left(1,2)\\n \\n -Poincaré inequality instead of the weak \\n \\n \\n \\n \\n (\\n \\n 1\\n ,\\n 1\\n \\n )\\n \\n \\n \\\\left(1,1)\\n \\n -Poincaré inequality compared with the results in the previous references.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0119\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0119","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们考虑了有界变化容量(BV 容量),并通过 BV 容量表征了严格局部 Dirichlet 空间一般框架中与 BV 函数相关的索波列夫型不等式。在弱 Bakry-Émery 曲率型条件下,我们给出了 Hausdorff 度量与 Hausdorff 容量之间的联系,并发现了 BV 函数的一些容量不等式和 Maz'ya-Sobolev 不等式。此外,还利用准巴克里-埃梅里曲率条件获得了总变分的德乔吉特征。值得注意的是,与前人的结果相比,本文的结果是在德里赫特空间支持弱 ( 1 , 2 ) \left(1,2) -Poincaré 不等式而非弱 ( 1 , 1 ) \left(1,1) -Poincaré 不等式的情况下证明的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The bounded variation capacity and Sobolev-type inequalities on Dirichlet spaces
In this article, we consider the bounded variation capacity (BV capacity) and characterize the Sobolev-type inequalities related to BV functions in a general framework of strictly local Dirichlet spaces with a doubling measure via the BV capacity. Under a weak Bakry-Émery curvature-type condition, we give the connection between the Hausdorff measure and the Hausdorff capacity, and discover some capacitary inequalities and Maz’ya-Sobolev inequalities for BV functions. The De Giorgi characterization for total variation is also obtained with a quasi-Bakry-Émery curvature condition. It should be noted that the results in this article are proved if the Dirichlet space supports the weak ( 1 , 2 ) \left(1,2) -Poincaré inequality instead of the weak ( 1 , 1 ) \left(1,1) -Poincaré inequality compared with the results in the previous references.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信