N. M. Sushchevskya, V. D. Scherbakov, A. A. Peyve, E. P. Dubinin, B. V. Belyatsky, A.V. Zhilkina
{"title":"西南印度洋脊安德鲁-贝恩断裂带内的洋壳形成:岩石学和地球化学证据","authors":"N. M. Sushchevskya, V. D. Scherbakov, A. A. Peyve, E. P. Dubinin, B. V. Belyatsky, A.V. Zhilkina","doi":"10.1134/S0016702924010026","DOIUrl":null,"url":null,"abstract":"<div><p>Petrogeochemical data on basalts (lithophile elements and Sr–Nd–Pb isotopes, liquidus olivine and spinel compositions) from the transition zone of the Southwest Indian Ridge (SWIR) in the Du Toit–Andrew Bain fault zone indicate significant differences in their composition. Tholeiites enriched in Na and depleted in Fe (Na-TOR genetic type) are developed within the rift valley adjacent to the faults. Deep-type basalts (TOR-1) are present in the western wall of the Andrew Bain Fault. The outpouring of these magma types reflects a possible change in geodynamic setting during formation of this zone: from deep and high temperature to shallower magma generation conditions (Sushchevskaya et al., 2022). Differences in the primary melts of tholeiites from the rift valley and the Andrew Bain Transform Fault are also traced in the composition of liquidus olivine. The olivines from rift valley are similar to the typical Na-TOR olivines with Mg number of Fo<sub>88-87</sub>, low Ni and elevated Mn contents. On the contrary, olivines in tholeiite from the Andrew Bain Fault Zone are enriched in Ni and depleted in Mn, which may indicate the involvement of pyroxenite in melt generation. This component is either oceanic lithosphere recycled through the deep mantle or fragments of previously formed oceanic crust, which were subsequently involved in melting during the spreading axes jumping. A similar process is typical of the Bouvet Triple Junction, where the trace-element composition of olivine shows significant heterogeneity. The radiogenic composition of Pb and Sr of the Andrew Bain Fault tholeiites are similar to those of enriched magmas from such Indian Ocean rises as Crozet, Marion and Bouvet, but differ from those of the Conrad and Af. Nikitin rises. The source of such tholeiite melts is close in composition to the model HIMU type (with high U/Pb), which likely contains an admixture of EM-II component (with elevated Rb/Sr).</p></div>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"62 1","pages":"1 - 17"},"PeriodicalIF":0.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oceanic Crust Formation within the Andrew Bain Fault Zone, Southwest Indian Ridge: Petrological and Geochemical Evidence\",\"authors\":\"N. M. Sushchevskya, V. D. Scherbakov, A. A. Peyve, E. P. Dubinin, B. V. Belyatsky, A.V. Zhilkina\",\"doi\":\"10.1134/S0016702924010026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Petrogeochemical data on basalts (lithophile elements and Sr–Nd–Pb isotopes, liquidus olivine and spinel compositions) from the transition zone of the Southwest Indian Ridge (SWIR) in the Du Toit–Andrew Bain fault zone indicate significant differences in their composition. Tholeiites enriched in Na and depleted in Fe (Na-TOR genetic type) are developed within the rift valley adjacent to the faults. Deep-type basalts (TOR-1) are present in the western wall of the Andrew Bain Fault. The outpouring of these magma types reflects a possible change in geodynamic setting during formation of this zone: from deep and high temperature to shallower magma generation conditions (Sushchevskaya et al., 2022). Differences in the primary melts of tholeiites from the rift valley and the Andrew Bain Transform Fault are also traced in the composition of liquidus olivine. The olivines from rift valley are similar to the typical Na-TOR olivines with Mg number of Fo<sub>88-87</sub>, low Ni and elevated Mn contents. On the contrary, olivines in tholeiite from the Andrew Bain Fault Zone are enriched in Ni and depleted in Mn, which may indicate the involvement of pyroxenite in melt generation. This component is either oceanic lithosphere recycled through the deep mantle or fragments of previously formed oceanic crust, which were subsequently involved in melting during the spreading axes jumping. A similar process is typical of the Bouvet Triple Junction, where the trace-element composition of olivine shows significant heterogeneity. The radiogenic composition of Pb and Sr of the Andrew Bain Fault tholeiites are similar to those of enriched magmas from such Indian Ocean rises as Crozet, Marion and Bouvet, but differ from those of the Conrad and Af. Nikitin rises. The source of such tholeiite melts is close in composition to the model HIMU type (with high U/Pb), which likely contains an admixture of EM-II component (with elevated Rb/Sr).</p></div>\",\"PeriodicalId\":12781,\"journal\":{\"name\":\"Geochemistry International\",\"volume\":\"62 1\",\"pages\":\"1 - 17\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016702924010026\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702924010026","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Oceanic Crust Formation within the Andrew Bain Fault Zone, Southwest Indian Ridge: Petrological and Geochemical Evidence
Petrogeochemical data on basalts (lithophile elements and Sr–Nd–Pb isotopes, liquidus olivine and spinel compositions) from the transition zone of the Southwest Indian Ridge (SWIR) in the Du Toit–Andrew Bain fault zone indicate significant differences in their composition. Tholeiites enriched in Na and depleted in Fe (Na-TOR genetic type) are developed within the rift valley adjacent to the faults. Deep-type basalts (TOR-1) are present in the western wall of the Andrew Bain Fault. The outpouring of these magma types reflects a possible change in geodynamic setting during formation of this zone: from deep and high temperature to shallower magma generation conditions (Sushchevskaya et al., 2022). Differences in the primary melts of tholeiites from the rift valley and the Andrew Bain Transform Fault are also traced in the composition of liquidus olivine. The olivines from rift valley are similar to the typical Na-TOR olivines with Mg number of Fo88-87, low Ni and elevated Mn contents. On the contrary, olivines in tholeiite from the Andrew Bain Fault Zone are enriched in Ni and depleted in Mn, which may indicate the involvement of pyroxenite in melt generation. This component is either oceanic lithosphere recycled through the deep mantle or fragments of previously formed oceanic crust, which were subsequently involved in melting during the spreading axes jumping. A similar process is typical of the Bouvet Triple Junction, where the trace-element composition of olivine shows significant heterogeneity. The radiogenic composition of Pb and Sr of the Andrew Bain Fault tholeiites are similar to those of enriched magmas from such Indian Ocean rises as Crozet, Marion and Bouvet, but differ from those of the Conrad and Af. Nikitin rises. The source of such tholeiite melts is close in composition to the model HIMU type (with high U/Pb), which likely contains an admixture of EM-II component (with elevated Rb/Sr).
期刊介绍:
Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.