求助PDF
{"title":"奇异椭圆微分方程解的存在性和唯一性","authors":"Shanshan Gu, Bianxia Yang, Wenrui Shao","doi":"10.1515/anona-2023-0126","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we are concerned about the existence, uniqueness, and nonexistence of the positive solution for: <jats:disp-formula id=\"j_anona-2023-0126_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mfenced open=\"{\" close=\"\">\n <m:mrow>\n <m:mtable displaystyle=\"true\">\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>−</m:mo>\n <m:mfrac>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:mfrac>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n <m:mo>⋅</m:mo>\n <m:mrow>\n <m:mo>∇</m:mo>\n </m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>=</m:mo>\n <m:mi>μ</m:mi>\n <m:mi>h</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>q</m:mi>\n <m:mo>−</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>+</m:mo>\n <m:mi>λ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>−</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>p</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mspace width=\"1.0em\" />\n <m:mi>x</m:mi>\n <m:mo>∈</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>N</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mi>u</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>→</m:mo>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n <m:mspace width=\"1em\" />\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>as</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:mo>∣</m:mo>\n <m:mi>x</m:mi>\n <m:mo>∣</m:mo>\n <m:mo>→</m:mo>\n <m:mo>+</m:mo>\n <m:mi>∞</m:mi>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n </m:mtable>\n </m:mrow>\n </m:mfenced>\n </m:math>\n <jats:tex-math>\\left\\{\\begin{array}{l}-\\Delta u-\\frac{1}{2}\\left(x\\cdot \\nabla u)=\\mu h\\left(x){u}^{q-1}+\\lambda u-{u}^{p},\\hspace{1.0em}x\\in {{\\mathbb{R}}}^{N},\\\\ u\\left(x)\\to 0,\\hspace{1em}\\hspace{0.1em}\\text{as}\\hspace{0.1em}\\hspace{0.33em}| x| \\to +\\infty ,\\end{array}\\right.</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>N</m:mi>\n <m:mo>⩾</m:mo>\n <m:mn>3</m:mn>\n </m:math>\n <jats:tex-math>N\\geqslant 3</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mn>0</m:mn>\n <m:mo><</m:mo>\n <m:mi>q</m:mi>\n <m:mo><</m:mo>\n <m:mn>1</m:mn>\n </m:math>\n <jats:tex-math>0\\lt q\\lt 1</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>λ</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\lambda \\gt 0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>p</m:mi>\n <m:mo>></m:mo>\n <m:mn>1</m:mn>\n </m:math>\n <jats:tex-math>p\\gt 1</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_006.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>μ</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\mu \\gt 0</ja","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness of solution for a singular elliptic differential equation\",\"authors\":\"Shanshan Gu, Bianxia Yang, Wenrui Shao\",\"doi\":\"10.1515/anona-2023-0126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>In this article, we are concerned about the existence, uniqueness, and nonexistence of the positive solution for: <jats:disp-formula id=\\\"j_anona-2023-0126_eq_001\\\">\\n <jats:alternatives>\\n <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <m:mfenced open=\\\"{\\\" close=\\\"\\\">\\n <m:mrow>\\n <m:mtable displaystyle=\\\"true\\\">\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mo>−</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mo>−</m:mo>\\n <m:mfrac>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:mfrac>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n <m:mo>⋅</m:mo>\\n <m:mrow>\\n <m:mo>∇</m:mo>\\n </m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mo>=</m:mo>\\n <m:mi>μ</m:mi>\\n <m:mi>h</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>q</m:mi>\\n <m:mo>−</m:mo>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mo>+</m:mo>\\n <m:mi>λ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mo>−</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>p</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mo>,</m:mo>\\n <m:mspace width=\\\"1.0em\\\" />\\n <m:mi>x</m:mi>\\n <m:mo>∈</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>N</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mo>,</m:mo>\\n </m:mtd>\\n </m:mtr>\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mi>u</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mo>→</m:mo>\\n <m:mn>0</m:mn>\\n <m:mo>,</m:mo>\\n <m:mspace width=\\\"1em\\\" />\\n <m:mstyle>\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mtext>as</m:mtext>\\n <m:mspace width=\\\"0.1em\\\" />\\n </m:mstyle>\\n <m:mspace width=\\\"0.33em\\\" />\\n <m:mo>∣</m:mo>\\n <m:mi>x</m:mi>\\n <m:mo>∣</m:mo>\\n <m:mo>→</m:mo>\\n <m:mo>+</m:mo>\\n <m:mi>∞</m:mi>\\n <m:mo>,</m:mo>\\n </m:mtd>\\n </m:mtr>\\n </m:mtable>\\n </m:mrow>\\n </m:mfenced>\\n </m:math>\\n <jats:tex-math>\\\\left\\\\{\\\\begin{array}{l}-\\\\Delta u-\\\\frac{1}{2}\\\\left(x\\\\cdot \\\\nabla u)=\\\\mu h\\\\left(x){u}^{q-1}+\\\\lambda u-{u}^{p},\\\\hspace{1.0em}x\\\\in {{\\\\mathbb{R}}}^{N},\\\\\\\\ u\\\\left(x)\\\\to 0,\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{as}\\\\hspace{0.1em}\\\\hspace{0.33em}| x| \\\\to +\\\\infty ,\\\\end{array}\\\\right.</jats:tex-math>\\n </jats:alternatives>\\n </jats:disp-formula> where <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_002.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>N</m:mi>\\n <m:mo>⩾</m:mo>\\n <m:mn>3</m:mn>\\n </m:math>\\n <jats:tex-math>N\\\\geqslant 3</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_003.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mn>0</m:mn>\\n <m:mo><</m:mo>\\n <m:mi>q</m:mi>\\n <m:mo><</m:mo>\\n <m:mn>1</m:mn>\\n </m:math>\\n <jats:tex-math>0\\\\lt q\\\\lt 1</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_004.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>λ</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>0</m:mn>\\n </m:math>\\n <jats:tex-math>\\\\lambda \\\\gt 0</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_005.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>p</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>1</m:mn>\\n </m:math>\\n <jats:tex-math>p\\\\gt 1</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_006.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>μ</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>0</m:mn>\\n </m:math>\\n <jats:tex-math>\\\\mu \\\\gt 0</ja\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0126\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0126","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Existence and uniqueness of solution for a singular elliptic differential equation
In this article, we are concerned about the existence, uniqueness, and nonexistence of the positive solution for:
−
Δ
u
−
1
2
(
x
⋅
∇
u
)
=
μ
h
(
x
)
u
q
−
1
+
λ
u
−
u
p
,
x
∈
R
N
,
u
(
x
)
→
0
,
as
∣
x
∣
→
+
∞
,
\left\{\begin{array}{l}-\Delta u-\frac{1}{2}\left(x\cdot \nabla u)=\mu h\left(x){u}^{q-1}+\lambda u-{u}^{p},\hspace{1.0em}x\in {{\mathbb{R}}}^{N},\\ u\left(x)\to 0,\hspace{1em}\hspace{0.1em}\text{as}\hspace{0.1em}\hspace{0.33em}| x| \to +\infty ,\end{array}\right.
where
N
⩾
3
N\geqslant 3
,
0
<
q
<
1
0\lt q\lt 1
,
λ
>
0
\lambda \gt 0
,
p
>
1
p\gt 1
,
μ
>
0
\mu \gt 0