求助PDF
{"title":"奇异椭圆微分方程解的存在性和唯一性","authors":"Shanshan Gu, Bianxia Yang, Wenrui Shao","doi":"10.1515/anona-2023-0126","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we are concerned about the existence, uniqueness, and nonexistence of the positive solution for: <jats:disp-formula id=\"j_anona-2023-0126_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mfenced open=\"{\" close=\"\">\n <m:mrow>\n <m:mtable displaystyle=\"true\">\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>−</m:mo>\n <m:mfrac>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:mfrac>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n <m:mo>⋅</m:mo>\n <m:mrow>\n <m:mo>∇</m:mo>\n </m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>=</m:mo>\n <m:mi>μ</m:mi>\n <m:mi>h</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>q</m:mi>\n <m:mo>−</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>+</m:mo>\n <m:mi>λ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>−</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>p</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n <m:mspace width=\"1.0em\" />\n <m:mi>x</m:mi>\n <m:mo>∈</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>N</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mi>u</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>→</m:mo>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n <m:mspace width=\"1em\" />\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>as</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:mo>∣</m:mo>\n <m:mi>x</m:mi>\n <m:mo>∣</m:mo>\n <m:mo>→</m:mo>\n <m:mo>+</m:mo>\n <m:mi>∞</m:mi>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n </m:mtable>\n </m:mrow>\n </m:mfenced>\n </m:math>\n <jats:tex-math>\\left\\{\\begin{array}{l}-\\Delta u-\\frac{1}{2}\\left(x\\cdot \\nabla u)=\\mu h\\left(x){u}^{q-1}+\\lambda u-{u}^{p},\\hspace{1.0em}x\\in {{\\mathbb{R}}}^{N},\\\\ u\\left(x)\\to 0,\\hspace{1em}\\hspace{0.1em}\\text{as}\\hspace{0.1em}\\hspace{0.33em}| x| \\to +\\infty ,\\end{array}\\right.</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>N</m:mi>\n <m:mo>⩾</m:mo>\n <m:mn>3</m:mn>\n </m:math>\n <jats:tex-math>N\\geqslant 3</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mn>0</m:mn>\n <m:mo><</m:mo>\n <m:mi>q</m:mi>\n <m:mo><</m:mo>\n <m:mn>1</m:mn>\n </m:math>\n <jats:tex-math>0\\lt q\\lt 1</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>λ</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\lambda \\gt 0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>p</m:mi>\n <m:mo>></m:mo>\n <m:mn>1</m:mn>\n </m:math>\n <jats:tex-math>p\\gt 1</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0126_eq_006.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>μ</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\mu \\gt 0</ja","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"17 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and uniqueness of solution for a singular elliptic differential equation\",\"authors\":\"Shanshan Gu, Bianxia Yang, Wenrui Shao\",\"doi\":\"10.1515/anona-2023-0126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>In this article, we are concerned about the existence, uniqueness, and nonexistence of the positive solution for: <jats:disp-formula id=\\\"j_anona-2023-0126_eq_001\\\">\\n <jats:alternatives>\\n <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <m:mfenced open=\\\"{\\\" close=\\\"\\\">\\n <m:mrow>\\n <m:mtable displaystyle=\\\"true\\\">\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mo>−</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mo>−</m:mo>\\n <m:mfrac>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:mfrac>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n <m:mo>⋅</m:mo>\\n <m:mrow>\\n <m:mo>∇</m:mo>\\n </m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mo>=</m:mo>\\n <m:mi>μ</m:mi>\\n <m:mi>h</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>q</m:mi>\\n <m:mo>−</m:mo>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mo>+</m:mo>\\n <m:mi>λ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mo>−</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>p</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mo>,</m:mo>\\n <m:mspace width=\\\"1.0em\\\" />\\n <m:mi>x</m:mi>\\n <m:mo>∈</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>N</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mo>,</m:mo>\\n </m:mtd>\\n </m:mtr>\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mi>u</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mo>→</m:mo>\\n <m:mn>0</m:mn>\\n <m:mo>,</m:mo>\\n <m:mspace width=\\\"1em\\\" />\\n <m:mstyle>\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mtext>as</m:mtext>\\n <m:mspace width=\\\"0.1em\\\" />\\n </m:mstyle>\\n <m:mspace width=\\\"0.33em\\\" />\\n <m:mo>∣</m:mo>\\n <m:mi>x</m:mi>\\n <m:mo>∣</m:mo>\\n <m:mo>→</m:mo>\\n <m:mo>+</m:mo>\\n <m:mi>∞</m:mi>\\n <m:mo>,</m:mo>\\n </m:mtd>\\n </m:mtr>\\n </m:mtable>\\n </m:mrow>\\n </m:mfenced>\\n </m:math>\\n <jats:tex-math>\\\\left\\\\{\\\\begin{array}{l}-\\\\Delta u-\\\\frac{1}{2}\\\\left(x\\\\cdot \\\\nabla u)=\\\\mu h\\\\left(x){u}^{q-1}+\\\\lambda u-{u}^{p},\\\\hspace{1.0em}x\\\\in {{\\\\mathbb{R}}}^{N},\\\\\\\\ u\\\\left(x)\\\\to 0,\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{as}\\\\hspace{0.1em}\\\\hspace{0.33em}| x| \\\\to +\\\\infty ,\\\\end{array}\\\\right.</jats:tex-math>\\n </jats:alternatives>\\n </jats:disp-formula> where <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_002.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>N</m:mi>\\n <m:mo>⩾</m:mo>\\n <m:mn>3</m:mn>\\n </m:math>\\n <jats:tex-math>N\\\\geqslant 3</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_003.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mn>0</m:mn>\\n <m:mo><</m:mo>\\n <m:mi>q</m:mi>\\n <m:mo><</m:mo>\\n <m:mn>1</m:mn>\\n </m:math>\\n <jats:tex-math>0\\\\lt q\\\\lt 1</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_004.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>λ</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>0</m:mn>\\n </m:math>\\n <jats:tex-math>\\\\lambda \\\\gt 0</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_005.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>p</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>1</m:mn>\\n </m:math>\\n <jats:tex-math>p\\\\gt 1</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0126_eq_006.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>μ</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>0</m:mn>\\n </m:math>\\n <jats:tex-math>\\\\mu \\\\gt 0</ja\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0126\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0126","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Existence and uniqueness of solution for a singular elliptic differential equation
In this article, we are concerned about the existence, uniqueness, and nonexistence of the positive solution for:
−
Δ
u
−
1
2
(
x
⋅
∇
u
)
=
μ
h
(
x
)
u
q
−
1
+
λ
u
−
u
p
,
x
∈
R
N
,
u
(
x
)
→
0
,
as
∣
x
∣
→
+
∞
,
\left\{\begin{array}{l}-\Delta u-\frac{1}{2}\left(x\cdot \nabla u)=\mu h\left(x){u}^{q-1}+\lambda u-{u}^{p},\hspace{1.0em}x\in {{\mathbb{R}}}^{N},\\ u\left(x)\to 0,\hspace{1em}\hspace{0.1em}\text{as}\hspace{0.1em}\hspace{0.33em}| x| \to +\infty ,\end{array}\right.
where
N
⩾
3
N\geqslant 3
,
0
<
q
<
1
0\lt q\lt 1
,
λ
>
0
\lambda \gt 0
,
p
>
1
p\gt 1
,
μ
>
0
\mu \gt 0
来源期刊
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico