Yingchun Yang, Xu Zhao, Tianxi Han, Zhe Li, Fei Pan
{"title":"使用改进的旋转门趋势算法压缩违反电气法规识别数据","authors":"Yingchun Yang, Xu Zhao, Tianxi Han, Zhe Li, Fei Pan","doi":"10.2478/amns-2024-0478","DOIUrl":null,"url":null,"abstract":"\n Aiming at the challenge of storing massive power grid data, this paper proposes an improved swing gate trend algorithm to effectively compress 5G data. The algorithm first performs least squares smoothing on the original data to reduce noise interference on the SDT algorithm, which enables the data compression process to more accurately determine the data trend. Further, the shortcomings of the original SDT algorithm are improved, including adaptive frequency conversion data processing, dynamic threshold adjustment, and anomaly recording strategy, to enhance the practicality and efficiency of the algorithm. Through simulation analysis and example data validation, the study shows that the data compression ratio can be stabilized at about 23.98 when the data compression time reaches 1.6 minutes, and the actual error is very close to the desired error. The time overhead of the improved SDT algorithm is only 0.225 seconds, indicating that the algorithm is efficient and reliable. Combined with different data compression storage strategies, the algorithm can further reduce the data compression time. This study provides an adequate data compression method for electric code violation identification, which offers a practical solution for processing and storing large-scale grid data.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"65 1-2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compression of electrical code violation recognition data using the improved swinging door trending algorithm\",\"authors\":\"Yingchun Yang, Xu Zhao, Tianxi Han, Zhe Li, Fei Pan\",\"doi\":\"10.2478/amns-2024-0478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Aiming at the challenge of storing massive power grid data, this paper proposes an improved swing gate trend algorithm to effectively compress 5G data. The algorithm first performs least squares smoothing on the original data to reduce noise interference on the SDT algorithm, which enables the data compression process to more accurately determine the data trend. Further, the shortcomings of the original SDT algorithm are improved, including adaptive frequency conversion data processing, dynamic threshold adjustment, and anomaly recording strategy, to enhance the practicality and efficiency of the algorithm. Through simulation analysis and example data validation, the study shows that the data compression ratio can be stabilized at about 23.98 when the data compression time reaches 1.6 minutes, and the actual error is very close to the desired error. The time overhead of the improved SDT algorithm is only 0.225 seconds, indicating that the algorithm is efficient and reliable. Combined with different data compression storage strategies, the algorithm can further reduce the data compression time. This study provides an adequate data compression method for electric code violation identification, which offers a practical solution for processing and storing large-scale grid data.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"65 1-2\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amns-2024-0478\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amns-2024-0478","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Compression of electrical code violation recognition data using the improved swinging door trending algorithm
Aiming at the challenge of storing massive power grid data, this paper proposes an improved swing gate trend algorithm to effectively compress 5G data. The algorithm first performs least squares smoothing on the original data to reduce noise interference on the SDT algorithm, which enables the data compression process to more accurately determine the data trend. Further, the shortcomings of the original SDT algorithm are improved, including adaptive frequency conversion data processing, dynamic threshold adjustment, and anomaly recording strategy, to enhance the practicality and efficiency of the algorithm. Through simulation analysis and example data validation, the study shows that the data compression ratio can be stabilized at about 23.98 when the data compression time reaches 1.6 minutes, and the actual error is very close to the desired error. The time overhead of the improved SDT algorithm is only 0.225 seconds, indicating that the algorithm is efficient and reliable. Combined with different data compression storage strategies, the algorithm can further reduce the data compression time. This study provides an adequate data compression method for electric code violation identification, which offers a practical solution for processing and storing large-scale grid data.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico