{"title":"利用反硝化-分解模型估算越南红河三角洲水稻和一年生高地作物的温室气体排放量","authors":"Bui Thi Thu Trang, Mai Van Trinh","doi":"10.1515/gps-2023-0187","DOIUrl":null,"url":null,"abstract":"\n This study used the denitrification–decomposition (DNDC) model and ArcGIS 10.1 to calculate and quantify the greenhouse gas (GHG) potential from rice and annual upland crops in the Red River Delta of Vietnam. GHG emissions were monitored, analyzed, and calculated at experimental sites. The operating mechanism, sensitivity analysis of the parameters, calibration, and verification of the DNDC model for the GHG emission calculation were studied and performed, and a set of parameters was built. A good correlation between actual and simulated values was shown. From the data set of meteorological stations in and around the Red River Delta, the current land-use map, the topographic and soil map, a complex map of meteorology–soil–land use was built. Each unit of this map contains complete information about climate, soil, and crops as input data for modeling GHG emissions from crop production. From the spatial analysis and collected input data, GHG emissions were measured and calculated for the cultivated field of the Red River Delta (annual rice and upland crops) using the DNDC model. The model's outputs were used to build thematic maps on the distribution of global warming potential (CH4, N2O) for each unit of the complex map of climate, soil, and crops.","PeriodicalId":12758,"journal":{"name":"Green Processing and Synthesis","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of greenhouse gas emissions from rice and annual upland crops in Red River Delta of Vietnam using the denitrification–decomposition model\",\"authors\":\"Bui Thi Thu Trang, Mai Van Trinh\",\"doi\":\"10.1515/gps-2023-0187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study used the denitrification–decomposition (DNDC) model and ArcGIS 10.1 to calculate and quantify the greenhouse gas (GHG) potential from rice and annual upland crops in the Red River Delta of Vietnam. GHG emissions were monitored, analyzed, and calculated at experimental sites. The operating mechanism, sensitivity analysis of the parameters, calibration, and verification of the DNDC model for the GHG emission calculation were studied and performed, and a set of parameters was built. A good correlation between actual and simulated values was shown. From the data set of meteorological stations in and around the Red River Delta, the current land-use map, the topographic and soil map, a complex map of meteorology–soil–land use was built. Each unit of this map contains complete information about climate, soil, and crops as input data for modeling GHG emissions from crop production. From the spatial analysis and collected input data, GHG emissions were measured and calculated for the cultivated field of the Red River Delta (annual rice and upland crops) using the DNDC model. The model's outputs were used to build thematic maps on the distribution of global warming potential (CH4, N2O) for each unit of the complex map of climate, soil, and crops.\",\"PeriodicalId\":12758,\"journal\":{\"name\":\"Green Processing and Synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Processing and Synthesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/gps-2023-0187\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Processing and Synthesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/gps-2023-0187","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Estimation of greenhouse gas emissions from rice and annual upland crops in Red River Delta of Vietnam using the denitrification–decomposition model
This study used the denitrification–decomposition (DNDC) model and ArcGIS 10.1 to calculate and quantify the greenhouse gas (GHG) potential from rice and annual upland crops in the Red River Delta of Vietnam. GHG emissions were monitored, analyzed, and calculated at experimental sites. The operating mechanism, sensitivity analysis of the parameters, calibration, and verification of the DNDC model for the GHG emission calculation were studied and performed, and a set of parameters was built. A good correlation between actual and simulated values was shown. From the data set of meteorological stations in and around the Red River Delta, the current land-use map, the topographic and soil map, a complex map of meteorology–soil–land use was built. Each unit of this map contains complete information about climate, soil, and crops as input data for modeling GHG emissions from crop production. From the spatial analysis and collected input data, GHG emissions were measured and calculated for the cultivated field of the Red River Delta (annual rice and upland crops) using the DNDC model. The model's outputs were used to build thematic maps on the distribution of global warming potential (CH4, N2O) for each unit of the complex map of climate, soil, and crops.
期刊介绍:
Green Processing and Synthesis is a bimonthly, peer-reviewed journal that provides up-to-date research both on fundamental as well as applied aspects of innovative green process development and chemical synthesis, giving an appropriate share to industrial views. The contributions are cutting edge, high-impact, authoritative, and provide both pros and cons of potential technologies. Green Processing and Synthesis provides a platform for scientists and engineers, especially chemists and chemical engineers, but is also open for interdisciplinary research from other areas such as physics, materials science, or catalysis.