{"title":"一类非光滑域上 p 增长高阶椭圆方程的梯度估计值","authors":"H. Tian, Shenzhou Zheng","doi":"10.1515/anona-2023-0132","DOIUrl":null,"url":null,"abstract":"\n <jats:p>This article is devoted to a global Calderón-Zygmund estimate in the framework of Lorentz spaces for the <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0132_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>m</m:mi>\n </m:math>\n <jats:tex-math>m</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-order gradients of weak solution to a higher-order elliptic equation with <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0132_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>p</m:mi>\n </m:math>\n <jats:tex-math>p</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-growth. We prove the main result based on a proper power decay estimation of the upper-level set by the principle of layer cake representation for the <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0132_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>γ</m:mi>\n <m:mo>,</m:mo>\n <m:mi>q</m:mi>\n </m:mrow>\n </m:msup>\n </m:math>\n <jats:tex-math>{L}^{\\gamma ,q}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-estimate of <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0132_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mrow>\n <m:mi>D</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>m</m:mi>\n </m:mrow>\n </m:msup>\n <m:mi>u</m:mi>\n </m:math>\n <jats:tex-math>{D}^{m}u</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, while the coefficient satisfies a small BMO semi-norm and the boundary of underlying domain is flat in the sense of Reifenberg. In particular, a tricky ingredient is to establish the normal component of higher derivatives controlled by the horizontal component of higher derivatives of solutions in the neighborhood at any boundary point, which is achieved by comparing the solution under consideration with that for some reference problems.</jats:p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gradient estimates for a class of higher-order elliptic equations of p-growth over a nonsmooth domain\",\"authors\":\"H. Tian, Shenzhou Zheng\",\"doi\":\"10.1515/anona-2023-0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>This article is devoted to a global Calderón-Zygmund estimate in the framework of Lorentz spaces for the <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0132_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>m</m:mi>\\n </m:math>\\n <jats:tex-math>m</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-order gradients of weak solution to a higher-order elliptic equation with <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0132_eq_002.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>p</m:mi>\\n </m:math>\\n <jats:tex-math>p</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-growth. We prove the main result based on a proper power decay estimation of the upper-level set by the principle of layer cake representation for the <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0132_eq_003.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mrow>\\n <m:mi>L</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>γ</m:mi>\\n <m:mo>,</m:mo>\\n <m:mi>q</m:mi>\\n </m:mrow>\\n </m:msup>\\n </m:math>\\n <jats:tex-math>{L}^{\\\\gamma ,q}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-estimate of <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0132_eq_004.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mrow>\\n <m:mi>D</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>m</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mi>u</m:mi>\\n </m:math>\\n <jats:tex-math>{D}^{m}u</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, while the coefficient satisfies a small BMO semi-norm and the boundary of underlying domain is flat in the sense of Reifenberg. In particular, a tricky ingredient is to establish the normal component of higher derivatives controlled by the horizontal component of higher derivatives of solutions in the neighborhood at any boundary point, which is achieved by comparing the solution under consideration with that for some reference problems.</jats:p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0132\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0132","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文致力于在洛伦兹空间框架内对具有 p p 增长的高阶椭圆方程弱解的 m m 阶梯度进行全局卡尔德隆-齐格蒙估计。我们通过层蛋糕表示原理对上层集进行适当的功率衰减估计,证明了 L γ , q {L}^\{gamma ,q} 的主要结果。 -D m u {D}^{m}u 的估计,同时系数满足小 BMO 半规范,底层域的边界在 Reifenberg 意义上是平的。特别是,一个棘手的问题是确定高导数的法向分量受任意边界点邻域解的高导数水平分量控制,这可以通过将所考虑的解与一些参考问题的解进行比较来实现。
Gradient estimates for a class of higher-order elliptic equations of p-growth over a nonsmooth domain
This article is devoted to a global Calderón-Zygmund estimate in the framework of Lorentz spaces for the mm-order gradients of weak solution to a higher-order elliptic equation with pp-growth. We prove the main result based on a proper power decay estimation of the upper-level set by the principle of layer cake representation for the Lγ,q{L}^{\gamma ,q}-estimate of Dmu{D}^{m}u, while the coefficient satisfies a small BMO semi-norm and the boundary of underlying domain is flat in the sense of Reifenberg. In particular, a tricky ingredient is to establish the normal component of higher derivatives controlled by the horizontal component of higher derivatives of solutions in the neighborhood at any boundary point, which is achieved by comparing the solution under consideration with that for some reference problems.