求助PDF
{"title":"具有贝里斯基-狮子型非线性的准线性乔夸德方程的多重解","authors":"Yue Jia, Xianyong Yang","doi":"10.1515/anona-2023-0130","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we study the following quasilinear equation with nonlocal nonlinearity <jats:disp-formula id=\"j_anona-2023-0130_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>−</m:mo>\n <m:mi>κ</m:mi>\n <m:mi>u</m:mi>\n <m:mi>Δ</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>+</m:mo>\n <m:mi>λ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mi>x</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mo>−</m:mo>\n <m:mi>μ</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>*</m:mo>\n <m:mi>F</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mi>f</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>,</m:mo>\n <m:mspace width=\"1em\" />\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n <m:mspace width=\"0.1em\" />\n <m:mspace width=\"0.33em\" />\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>N</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n </m:math>\n <jats:tex-math>-\\Delta u-\\kappa u\\Delta \\left({u}^{2})+\\lambda u=\\left({| x| }^{-\\mu }* F\\left(u))f\\left(u),\\hspace{1em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N},</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>κ</m:mi>\n </m:math>\n <jats:tex-math>\\kappa </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is a parameter, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>N</m:mi>\n <m:mo>≥</m:mo>\n <m:mn>3</m:mn>\n </m:math>\n <jats:tex-math>N\\ge 3</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>μ</m:mi>\n <m:mo>∈</m:mo>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n <m:mi>N</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>\\mu \\in \\left(0,N)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>F</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>t</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>=</m:mo>\n <m:msubsup>\n <m:mrow>\n <m:mrow>\n <m:mo>∫</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mrow>\n <m:mn>0</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mi>t</m:mi>\n </m:mrow>\n </m:msubsup>\n <m:mi>f</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>s</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mi mathvariant=\"normal\">d</m:mi>\n <m:mi>s</m:mi>\n </m:math>\n <jats:tex-math>F\\left(t)={\\int }_{0}^{t}f\\left(s){\\rm{d}}s</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_006.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>λ</m:mi>\n </m:math>\n <jats:tex-math>\\lambda </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is a positive constant. We are going to analyze two cases: the <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_007.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msub>\n </m:math>\n <jats:tex-math>{L}_{2}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-norm of the solution is not confirmed and the <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0130_eq_008.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n ","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple solutions for the quasilinear Choquard equation with Berestycki-Lions-type nonlinearities\",\"authors\":\"Yue Jia, Xianyong Yang\",\"doi\":\"10.1515/anona-2023-0130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>In this article, we study the following quasilinear equation with nonlocal nonlinearity <jats:disp-formula id=\\\"j_anona-2023-0130_eq_001\\\">\\n <jats:alternatives>\\n <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0130_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <m:mo>−</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mo>−</m:mo>\\n <m:mi>κ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mi>Δ</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msup>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mo>+</m:mo>\\n <m:mi>λ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mo>=</m:mo>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mo>∣</m:mo>\\n <m:mi>x</m:mi>\\n <m:mo>∣</m:mo>\\n </m:mrow>\\n <m:mrow>\\n <m:mo>−</m:mo>\\n <m:mi>μ</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mo>*</m:mo>\\n <m:mi>F</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mi>f</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mo>,</m:mo>\\n <m:mspace width=\\\"1em\\\" />\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mtext>in</m:mtext>\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mspace width=\\\"0.33em\\\" />\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>N</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mo>,</m:mo>\\n </m:math>\\n <jats:tex-math>-\\\\Delta u-\\\\kappa u\\\\Delta \\\\left({u}^{2})+\\\\lambda u=\\\\left({| x| }^{-\\\\mu }* F\\\\left(u))f\\\\left(u),\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{N},</jats:tex-math>\\n </jats:alternatives>\\n </jats:disp-formula> where <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0130_eq_002.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>κ</m:mi>\\n </m:math>\\n <jats:tex-math>\\\\kappa </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> is a parameter, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0130_eq_003.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>N</m:mi>\\n <m:mo>≥</m:mo>\\n <m:mn>3</m:mn>\\n </m:math>\\n <jats:tex-math>N\\\\ge 3</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0130_eq_004.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>μ</m:mi>\\n <m:mo>∈</m:mo>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mn>0</m:mn>\\n <m:mo>,</m:mo>\\n <m:mi>N</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:tex-math>\\\\mu \\\\in \\\\left(0,N)</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0130_eq_005.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>F</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>t</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mo>=</m:mo>\\n <m:msubsup>\\n <m:mrow>\\n <m:mrow>\\n <m:mo>∫</m:mo>\\n </m:mrow>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>0</m:mn>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>t</m:mi>\\n </m:mrow>\\n </m:msubsup>\\n <m:mi>f</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>s</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mi mathvariant=\\\"normal\\\">d</m:mi>\\n <m:mi>s</m:mi>\\n </m:math>\\n <jats:tex-math>F\\\\left(t)={\\\\int }_{0}^{t}f\\\\left(s){\\\\rm{d}}s</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0130_eq_006.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>λ</m:mi>\\n </m:math>\\n <jats:tex-math>\\\\lambda </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> is a positive constant. We are going to analyze two cases: the <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0130_eq_007.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mrow>\\n <m:mi>L</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msub>\\n </m:math>\\n <jats:tex-math>{L}_{2}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-norm of the solution is not confirmed and the <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0130_eq_008.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mrow>\\n <m:mi>L</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n \",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0130\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0130","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Multiple solutions for the quasilinear Choquard equation with Berestycki-Lions-type nonlinearities
In this article, we study the following quasilinear equation with nonlocal nonlinearity
−
Δ
u
−
κ
u
Δ
(
u
2
)
+
λ
u
=
(
∣
x
∣
−
μ
*
F
(
u
)
)
f
(
u
)
,
in
R
N
,
-\Delta u-\kappa u\Delta \left({u}^{2})+\lambda u=\left({| x| }^{-\mu }* F\left(u))f\left(u),\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{N},
where
κ
\kappa
is a parameter,
N
≥
3
N\ge 3
,
μ
∈
(
0
,
N
)
\mu \in \left(0,N)
,
F
(
t
)
=
∫
0
t
f
(
s
)
d
s
F\left(t)={\int }_{0}^{t}f\left(s){\rm{d}}s
, and
λ
\lambda
is a positive constant. We are going to analyze two cases: the
L
2
{L}_{2}
-norm of the solution is not confirmed and the
L
2