求助PDF
{"title":"一类具有临界指数的凹凸薛定谔-泊松-斯莱特方程的多重正解","authors":"Tian-Tian Zheng, Chun-Yu Lei, Jia-Feng Liao","doi":"10.1515/anona-2023-0129","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we consider the multiplicity of positive solutions for a static Schrödinger-Poisson-Slater equation of the type <jats:disp-formula id=\"j_anona-2023-0129_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>+</m:mo>\n <m:mfenced open=\"(\" close=\")\">\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>∗</m:mo>\n <m:mfrac>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mn>4</m:mn>\n <m:mi>π</m:mi>\n <m:mi>x</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n </m:mfrac>\n </m:mrow>\n </m:mfenced>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:mi>μ</m:mi>\n <m:mi>f</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mi>u</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mi>p</m:mi>\n <m:mo>−</m:mo>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi>u</m:mi>\n <m:mo>+</m:mo>\n <m:mi>g</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mi>u</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mn>4</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi>u</m:mi>\n <m:mspace width=\"1em\" />\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>3</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n </m:math>\n <jats:tex-math>-\\Delta u+\\left({u}^{2}\\ast \\frac{1}{| 4\\pi x| }\\right)u=\\mu f\\left(x){| u| }^{p-2}u+g\\left(x){| u| }^{4}u\\hspace{1em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{3},</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>μ</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\mu \\gt 0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mn>1</m:mn>\n <m:mo><</m:mo>\n <m:mi>p</m:mi>\n <m:mo><</m:mo>\n <m:mn>2</m:mn>\n </m:math>\n <jats:tex-math>1\\lt p\\lt 2</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>f</m:mi>\n <m:mo>∈</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mstyle displaystyle=\"false\">\n <m:mfrac>\n <m:mrow>\n <m:mn>6</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mn>6</m:mn>\n <m:mo>−</m:mo>\n <m:mi>p</m:mi>\n </m:mrow>\n </m:mfrac>\n </m:mstyle>\n </m:mrow>\n </m:msup>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>3</m:mn>\n </m:mrow>\n </m:msup>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>f\\in {L}^{\\tfrac{6}{6-p}}\\left({{\\mathbb{R}}}^{3})</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>f</m:mi>\n <m:mo>,</m:mo>\n <m:mi>g</m:mi>\n <m:mo>∈</m:mo>\n <m:mi>C</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>3</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mo>+</m:mo>\n </m:mrow>\n </m:msup>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>f,g\\in C\\left({{\\mathbb{R}}}^{3},{{\\mathbb{R}}}^{+})</jats:tex-math>\n </jats:altern","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple positive solutions for a class of concave-convex Schrödinger-Poisson-Slater equations with critical exponent\",\"authors\":\"Tian-Tian Zheng, Chun-Yu Lei, Jia-Feng Liao\",\"doi\":\"10.1515/anona-2023-0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>In this article, we consider the multiplicity of positive solutions for a static Schrödinger-Poisson-Slater equation of the type <jats:disp-formula id=\\\"j_anona-2023-0129_eq_001\\\">\\n <jats:alternatives>\\n <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0129_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <m:mo>−</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mo>+</m:mo>\\n <m:mfenced open=\\\"(\\\" close=\\\")\\\">\\n <m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mo>∗</m:mo>\\n <m:mfrac>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n <m:mrow>\\n <m:mo>∣</m:mo>\\n <m:mn>4</m:mn>\\n <m:mi>π</m:mi>\\n <m:mi>x</m:mi>\\n <m:mo>∣</m:mo>\\n </m:mrow>\\n </m:mfrac>\\n </m:mrow>\\n </m:mfenced>\\n <m:mi>u</m:mi>\\n <m:mo>=</m:mo>\\n <m:mi>μ</m:mi>\\n <m:mi>f</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mo>∣</m:mo>\\n <m:mi>u</m:mi>\\n <m:mo>∣</m:mo>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>p</m:mi>\\n <m:mo>−</m:mo>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mi>u</m:mi>\\n <m:mo>+</m:mo>\\n <m:mi>g</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mo>∣</m:mo>\\n <m:mi>u</m:mi>\\n <m:mo>∣</m:mo>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>4</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mi>u</m:mi>\\n <m:mspace width=\\\"1em\\\" />\\n <m:mstyle>\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mtext>in</m:mtext>\\n <m:mspace width=\\\"0.1em\\\" />\\n </m:mstyle>\\n <m:mspace width=\\\"0.33em\\\" />\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>3</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mo>,</m:mo>\\n </m:math>\\n <jats:tex-math>-\\\\Delta u+\\\\left({u}^{2}\\\\ast \\\\frac{1}{| 4\\\\pi x| }\\\\right)u=\\\\mu f\\\\left(x){| u| }^{p-2}u+g\\\\left(x){| u| }^{4}u\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{3},</jats:tex-math>\\n </jats:alternatives>\\n </jats:disp-formula> where <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0129_eq_002.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>μ</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>0</m:mn>\\n </m:math>\\n <jats:tex-math>\\\\mu \\\\gt 0</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0129_eq_003.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mn>1</m:mn>\\n <m:mo><</m:mo>\\n <m:mi>p</m:mi>\\n <m:mo><</m:mo>\\n <m:mn>2</m:mn>\\n </m:math>\\n <jats:tex-math>1\\\\lt p\\\\lt 2</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0129_eq_004.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>f</m:mi>\\n <m:mo>∈</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi>L</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mstyle displaystyle=\\\"false\\\">\\n <m:mfrac>\\n <m:mrow>\\n <m:mn>6</m:mn>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>6</m:mn>\\n <m:mo>−</m:mo>\\n <m:mi>p</m:mi>\\n </m:mrow>\\n </m:mfrac>\\n </m:mstyle>\\n </m:mrow>\\n </m:msup>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>3</m:mn>\\n </m:mrow>\\n </m:msup>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:tex-math>f\\\\in {L}^{\\\\tfrac{6}{6-p}}\\\\left({{\\\\mathbb{R}}}^{3})</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0129_eq_005.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>f</m:mi>\\n <m:mo>,</m:mo>\\n <m:mi>g</m:mi>\\n <m:mo>∈</m:mo>\\n <m:mi>C</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>3</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mo>,</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mo>+</m:mo>\\n </m:mrow>\\n </m:msup>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:tex-math>f,g\\\\in C\\\\left({{\\\\mathbb{R}}}^{3},{{\\\\mathbb{R}}}^{+})</jats:tex-math>\\n </jats:altern\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0129\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0129","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Multiple positive solutions for a class of concave-convex Schrödinger-Poisson-Slater equations with critical exponent
In this article, we consider the multiplicity of positive solutions for a static Schrödinger-Poisson-Slater equation of the type
−
Δ
u
+
u
2
∗
1
∣
4
π
x
∣
u
=
μ
f
(
x
)
∣
u
∣
p
−
2
u
+
g
(
x
)
∣
u
∣
4
u
in
R
3
,
-\Delta u+\left({u}^{2}\ast \frac{1}{| 4\pi x| }\right)u=\mu f\left(x){| u| }^{p-2}u+g\left(x){| u| }^{4}u\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3},
where
μ
>
0
\mu \gt 0
,
1
<
p
<
2
1\lt p\lt 2
,
f
∈
L
6
6
−
p
(
R
3
)
f\in {L}^{\tfrac{6}{6-p}}\left({{\mathbb{R}}}^{3})
, and
f
,
g
∈
C
(
R
3
,
R
+
)
f,g\in C\left({{\mathbb{R}}}^{3},{{\mathbb{R}}}^{+})