一类具有临界指数的凹凸薛定谔-泊松-斯莱特方程的多重正解

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Tian-Tian Zheng, Chun-Yu Lei, Jia-Feng Liao
{"title":"一类具有临界指数的凹凸薛定谔-泊松-斯莱特方程的多重正解","authors":"Tian-Tian Zheng, Chun-Yu Lei, Jia-Feng Liao","doi":"10.1515/anona-2023-0129","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we consider the multiplicity of positive solutions for a static Schrödinger-Poisson-Slater equation of the type <jats:disp-formula id=\"j_anona-2023-0129_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>+</m:mo>\n <m:mfenced open=\"(\" close=\")\">\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>∗</m:mo>\n <m:mfrac>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mn>4</m:mn>\n <m:mi>π</m:mi>\n <m:mi>x</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n </m:mfrac>\n </m:mrow>\n </m:mfenced>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:mi>μ</m:mi>\n <m:mi>f</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mi>u</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mi>p</m:mi>\n <m:mo>−</m:mo>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi>u</m:mi>\n <m:mo>+</m:mo>\n <m:mi>g</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo>∣</m:mo>\n <m:mi>u</m:mi>\n <m:mo>∣</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mn>4</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi>u</m:mi>\n <m:mspace width=\"1em\" />\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>3</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n </m:math>\n <jats:tex-math>-\\Delta u+\\left({u}^{2}\\ast \\frac{1}{| 4\\pi x| }\\right)u=\\mu f\\left(x){| u| }^{p-2}u+g\\left(x){| u| }^{4}u\\hspace{1em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{3},</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>μ</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\mu \\gt 0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mn>1</m:mn>\n <m:mo><</m:mo>\n <m:mi>p</m:mi>\n <m:mo><</m:mo>\n <m:mn>2</m:mn>\n </m:math>\n <jats:tex-math>1\\lt p\\lt 2</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>f</m:mi>\n <m:mo>∈</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mstyle displaystyle=\"false\">\n <m:mfrac>\n <m:mrow>\n <m:mn>6</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mn>6</m:mn>\n <m:mo>−</m:mo>\n <m:mi>p</m:mi>\n </m:mrow>\n </m:mfrac>\n </m:mstyle>\n </m:mrow>\n </m:msup>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>3</m:mn>\n </m:mrow>\n </m:msup>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>f\\in {L}^{\\tfrac{6}{6-p}}\\left({{\\mathbb{R}}}^{3})</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0129_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>f</m:mi>\n <m:mo>,</m:mo>\n <m:mi>g</m:mi>\n <m:mo>∈</m:mo>\n <m:mi>C</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>3</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mo>+</m:mo>\n </m:mrow>\n </m:msup>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>f,g\\in C\\left({{\\mathbb{R}}}^{3},{{\\mathbb{R}}}^{+})</jats:tex-math>\n </jats:altern","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"11 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple positive solutions for a class of concave-convex Schrödinger-Poisson-Slater equations with critical exponent\",\"authors\":\"Tian-Tian Zheng, Chun-Yu Lei, Jia-Feng Liao\",\"doi\":\"10.1515/anona-2023-0129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>In this article, we consider the multiplicity of positive solutions for a static Schrödinger-Poisson-Slater equation of the type <jats:disp-formula id=\\\"j_anona-2023-0129_eq_001\\\">\\n <jats:alternatives>\\n <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0129_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <m:mo>−</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mo>+</m:mo>\\n <m:mfenced open=\\\"(\\\" close=\\\")\\\">\\n <m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mo>∗</m:mo>\\n <m:mfrac>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n <m:mrow>\\n <m:mo>∣</m:mo>\\n <m:mn>4</m:mn>\\n <m:mi>π</m:mi>\\n <m:mi>x</m:mi>\\n <m:mo>∣</m:mo>\\n </m:mrow>\\n </m:mfrac>\\n </m:mrow>\\n </m:mfenced>\\n <m:mi>u</m:mi>\\n <m:mo>=</m:mo>\\n <m:mi>μ</m:mi>\\n <m:mi>f</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mo>∣</m:mo>\\n <m:mi>u</m:mi>\\n <m:mo>∣</m:mo>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>p</m:mi>\\n <m:mo>−</m:mo>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mi>u</m:mi>\\n <m:mo>+</m:mo>\\n <m:mi>g</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mo>∣</m:mo>\\n <m:mi>u</m:mi>\\n <m:mo>∣</m:mo>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>4</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mi>u</m:mi>\\n <m:mspace width=\\\"1em\\\" />\\n <m:mstyle>\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mtext>in</m:mtext>\\n <m:mspace width=\\\"0.1em\\\" />\\n </m:mstyle>\\n <m:mspace width=\\\"0.33em\\\" />\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>3</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mo>,</m:mo>\\n </m:math>\\n <jats:tex-math>-\\\\Delta u+\\\\left({u}^{2}\\\\ast \\\\frac{1}{| 4\\\\pi x| }\\\\right)u=\\\\mu f\\\\left(x){| u| }^{p-2}u+g\\\\left(x){| u| }^{4}u\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}{{\\\\mathbb{R}}}^{3},</jats:tex-math>\\n </jats:alternatives>\\n </jats:disp-formula> where <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0129_eq_002.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>μ</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>0</m:mn>\\n </m:math>\\n <jats:tex-math>\\\\mu \\\\gt 0</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0129_eq_003.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mn>1</m:mn>\\n <m:mo><</m:mo>\\n <m:mi>p</m:mi>\\n <m:mo><</m:mo>\\n <m:mn>2</m:mn>\\n </m:math>\\n <jats:tex-math>1\\\\lt p\\\\lt 2</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0129_eq_004.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>f</m:mi>\\n <m:mo>∈</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi>L</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mstyle displaystyle=\\\"false\\\">\\n <m:mfrac>\\n <m:mrow>\\n <m:mn>6</m:mn>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>6</m:mn>\\n <m:mo>−</m:mo>\\n <m:mi>p</m:mi>\\n </m:mrow>\\n </m:mfrac>\\n </m:mstyle>\\n </m:mrow>\\n </m:msup>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>3</m:mn>\\n </m:mrow>\\n </m:msup>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:tex-math>f\\\\in {L}^{\\\\tfrac{6}{6-p}}\\\\left({{\\\\mathbb{R}}}^{3})</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0129_eq_005.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>f</m:mi>\\n <m:mo>,</m:mo>\\n <m:mi>g</m:mi>\\n <m:mo>∈</m:mo>\\n <m:mi>C</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>3</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mo>,</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mo>+</m:mo>\\n </m:mrow>\\n </m:msup>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:tex-math>f,g\\\\in C\\\\left({{\\\\mathbb{R}}}^{3},{{\\\\mathbb{R}}}^{+})</jats:tex-math>\\n </jats:altern\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0129\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0129","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将考虑静态薛定谔-泊松-斯莱特方程正解的多重性,该方程的类型为 - Δ u + u 2 ∗ 1 ∣ 4 π x ∣ u = μ f ( x ) ∣ u ∣ p - 2 u + g ( x ) ∣ u ∣ 4 u in R 3 , -\Delta u+\left({u}^{2}\ast \frac{1}{| 4\pi x| }\right)u=\mu f\left(x){| u| }^{p-2}u+g\left(x){| u| }^{4}u\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple positive solutions for a class of concave-convex Schrödinger-Poisson-Slater equations with critical exponent
In this article, we consider the multiplicity of positive solutions for a static Schrödinger-Poisson-Slater equation of the type Δ u + u 2 1 4 π x u = μ f ( x ) u p 2 u + g ( x ) u 4 u in R 3 , -\Delta u+\left({u}^{2}\ast \frac{1}{| 4\pi x| }\right)u=\mu f\left(x){| u| }^{p-2}u+g\left(x){| u| }^{4}u\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3}, where μ > 0 \mu \gt 0 , 1 < p < 2 1\lt p\lt 2 , f L 6 6 p ( R 3 ) f\in {L}^{\tfrac{6}{6-p}}\left({{\mathbb{R}}}^{3}) , and f , g C ( R 3 , R + ) f,g\in C\left({{\mathbb{R}}}^{3},{{\mathbb{R}}}^{+})
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊介绍: ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric. Indexed/​Abstracted: Web of Science SCIE Scopus CAS INSPEC Portico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信