{"title":"提高两个均匀收敛数值求解器对具有两个小参数的奇异扰动抛物对流-扩散-反应问题的精度和效率","authors":"K. Ansari, Mohammad Izadi, S. Noeiaghdam","doi":"10.1515/dema-2023-0144","DOIUrl":null,"url":null,"abstract":"\n <jats:p>This study is devoted to designing two hybrid computational algorithms to find approximate solutions for a class of singularly perturbed parabolic convection–diffusion–reaction problems with two small parameters. In our approaches, the time discretization is first performed by the well-known Rothe method and Taylor series procedures, which reduce the underlying model problem into a sequence of boundary value problems (BVPs). Hence, a matrix collocation technique based on novel shifted Delannoy functions (SDFs) is employed to solve each BVP at each time step. We show that our proposed hybrid approximate techniques are uniformly convergent in order <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_dema-2023-0144_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">O</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:msup>\n <m:mrow>\n <m:mi>τ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>s</m:mi>\n </m:mrow>\n </m:msup>\n <m:mo>+</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi>M</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mo>−</m:mo>\n <m:mstyle displaystyle=\"false\">\n <m:mfrac>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:mfrac>\n </m:mstyle>\n </m:mrow>\n </m:msup>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>{\\mathcal{O}}\\left(\\Delta {\\tau }^{s}+{M}^{-\\tfrac{1}{2}})</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> for <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_dema-2023-0144_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>s</m:mi>\n <m:mo>=</m:mo>\n <m:mn>1</m:mn>\n <m:mo>,</m:mo>\n <m:mn>2</m:mn>\n </m:math>\n <jats:tex-math>s=1,2</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_dema-2023-0144_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>τ</m:mi>\n </m:math>\n <jats:tex-math>\\Delta \\tau </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is the time step and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_dema-2023-0144_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>M</m:mi>\n </m:math>\n <jats:tex-math>M</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is the number of SDFs used in the approximation. Numerical simulations are performed to clarify the good alignment between numerical and theoretical findings. The computational results are more accurate as compared with those of existing numerical values in the literature.</jats:p>","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the accuracy and efficiency of two uniformly convergent numerical solvers for singularly perturbed parabolic convection–diffusion–reaction problems with two small parameters\",\"authors\":\"K. Ansari, Mohammad Izadi, S. Noeiaghdam\",\"doi\":\"10.1515/dema-2023-0144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>This study is devoted to designing two hybrid computational algorithms to find approximate solutions for a class of singularly perturbed parabolic convection–diffusion–reaction problems with two small parameters. In our approaches, the time discretization is first performed by the well-known Rothe method and Taylor series procedures, which reduce the underlying model problem into a sequence of boundary value problems (BVPs). Hence, a matrix collocation technique based on novel shifted Delannoy functions (SDFs) is employed to solve each BVP at each time step. We show that our proposed hybrid approximate techniques are uniformly convergent in order <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_dema-2023-0144_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi class=\\\"MJX-tex-caligraphic\\\" mathvariant=\\\"script\\\">O</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:msup>\\n <m:mrow>\\n <m:mi>τ</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>s</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mo>+</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi>M</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mo>−</m:mo>\\n <m:mstyle displaystyle=\\\"false\\\">\\n <m:mfrac>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:mfrac>\\n </m:mstyle>\\n </m:mrow>\\n </m:msup>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:tex-math>{\\\\mathcal{O}}\\\\left(\\\\Delta {\\\\tau }^{s}+{M}^{-\\\\tfrac{1}{2}})</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> for <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_dema-2023-0144_eq_002.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>s</m:mi>\\n <m:mo>=</m:mo>\\n <m:mn>1</m:mn>\\n <m:mo>,</m:mo>\\n <m:mn>2</m:mn>\\n </m:math>\\n <jats:tex-math>s=1,2</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, where <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_dema-2023-0144_eq_003.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:mi>τ</m:mi>\\n </m:math>\\n <jats:tex-math>\\\\Delta \\\\tau </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> is the time step and <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_dema-2023-0144_eq_004.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>M</m:mi>\\n </m:math>\\n <jats:tex-math>M</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> is the number of SDFs used in the approximation. Numerical simulations are performed to clarify the good alignment between numerical and theoretical findings. The computational results are more accurate as compared with those of existing numerical values in the literature.</jats:p>\",\"PeriodicalId\":10995,\"journal\":{\"name\":\"Demonstratio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demonstratio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2023-0144\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2023-0144","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本研究致力于设计两种混合计算算法,为一类具有两个小参数的奇异扰动抛物对流-扩散-反应问题找到近似解。在我们的方法中,首先通过著名的罗特方法和泰勒级数程序进行时间离散化,从而将基础模型问题简化为一系列边界值问题(BVP)。因此,我们采用了一种基于新颖的移位德兰诺伊函数(SDF)的矩阵配位技术来求解每个时间步的每个 BVP。我们的研究表明,我们提出的混合近似技术以 O ( Δ τ s + M - 1 2 ) 的顺序均匀收敛。 {\mathcal{O}}\left(\Delta {\tau }^{s}+{M}^{-\tfrac{1}{2}}) for s = 1 , 2 s=1,2 ,其中 Δ τ \Delta \tau 是时间步长,M M 是近似中使用的 SDF 数量。进行了数值模拟,以明确数值结果与理论结果之间的良好一致性。计算结果与文献中的现有数值相比更加精确。
Enhancing the accuracy and efficiency of two uniformly convergent numerical solvers for singularly perturbed parabolic convection–diffusion–reaction problems with two small parameters
This study is devoted to designing two hybrid computational algorithms to find approximate solutions for a class of singularly perturbed parabolic convection–diffusion–reaction problems with two small parameters. In our approaches, the time discretization is first performed by the well-known Rothe method and Taylor series procedures, which reduce the underlying model problem into a sequence of boundary value problems (BVPs). Hence, a matrix collocation technique based on novel shifted Delannoy functions (SDFs) is employed to solve each BVP at each time step. We show that our proposed hybrid approximate techniques are uniformly convergent in order O(Δτs+M−12){\mathcal{O}}\left(\Delta {\tau }^{s}+{M}^{-\tfrac{1}{2}}) for s=1,2s=1,2, where Δτ\Delta \tau is the time step and MM is the number of SDFs used in the approximation. Numerical simulations are performed to clarify the good alignment between numerical and theoretical findings. The computational results are more accurate as compared with those of existing numerical values in the literature.
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.