ℝ3中可压缩纳维-斯托克斯-斯莫卢霍夫斯基方程经典解的全局存在性和衰减估计

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Leilei Tong
{"title":"ℝ3中可压缩纳维-斯托克斯-斯莫卢霍夫斯基方程经典解的全局存在性和衰减估计","authors":"Leilei Tong","doi":"10.1515/anona-2023-0131","DOIUrl":null,"url":null,"abstract":"\n <jats:p>The compressible Navier-Stokes-Smoluchowski equations under investigation concern the behavior of the mixture of fluid and particles at a macroscopic scale. We devote to the existence of the global classical solution near the stationary solution based on the energy method under weaker conditions imposed on the external potential compared with Chen et al. (Global existence and time–decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Contin. Dyn. Syst. 36 (2016), no. 10, 5287–5307). Under further assumptions that the stationary solution <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0131_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mrow>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:msub>\n <m:mrow>\n <m:mi>ρ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>s</m:mi>\n </m:mrow>\n </m:msub>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>,</m:mo>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mrow>\n <m:mi>T</m:mi>\n </m:mrow>\n </m:msup>\n </m:math>\n <jats:tex-math>{\\left({\\rho }_{s}\\left(x),0,0)}^{T}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is in a small neighborhood of the constant state <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0131_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mrow>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mover accent=\"true\">\n <m:mrow>\n <m:mi>ρ</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mo>¯</m:mo>\n </m:mrow>\n </m:mover>\n <m:mo>,</m:mo>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mrow>\n <m:mi>T</m:mi>\n </m:mrow>\n </m:msup>\n </m:math>\n <jats:tex-math>{\\left(\\bar{\\rho },0,0)}^{T}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> at infinity, we also obtain the time decay rates of the solution by the combination of the energy method and the linear <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0131_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>p</m:mi>\n </m:mrow>\n </m:msup>\n </m:math>\n <jats:tex-math>{L}^{p}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>-<jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0131_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msup>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>q</m:mi>\n </m:mrow>\n </m:msup>\n </m:math>\n <jats:tex-math>{L}^{q}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> decay estimates.</jats:p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global existence and decay estimates of the classical solution to the compressible Navier-Stokes-Smoluchowski equations in ℝ3\",\"authors\":\"Leilei Tong\",\"doi\":\"10.1515/anona-2023-0131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>The compressible Navier-Stokes-Smoluchowski equations under investigation concern the behavior of the mixture of fluid and particles at a macroscopic scale. We devote to the existence of the global classical solution near the stationary solution based on the energy method under weaker conditions imposed on the external potential compared with Chen et al. (Global existence and time–decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Contin. Dyn. Syst. 36 (2016), no. 10, 5287–5307). Under further assumptions that the stationary solution <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0131_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mrow>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:msub>\\n <m:mrow>\\n <m:mi>ρ</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>s</m:mi>\\n </m:mrow>\\n </m:msub>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mo>,</m:mo>\\n <m:mn>0</m:mn>\\n <m:mo>,</m:mo>\\n <m:mn>0</m:mn>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>T</m:mi>\\n </m:mrow>\\n </m:msup>\\n </m:math>\\n <jats:tex-math>{\\\\left({\\\\rho }_{s}\\\\left(x),0,0)}^{T}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> is in a small neighborhood of the constant state <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0131_eq_002.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mrow>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mover accent=\\\"true\\\">\\n <m:mrow>\\n <m:mi>ρ</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mo>¯</m:mo>\\n </m:mrow>\\n </m:mover>\\n <m:mo>,</m:mo>\\n <m:mn>0</m:mn>\\n <m:mo>,</m:mo>\\n <m:mn>0</m:mn>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>T</m:mi>\\n </m:mrow>\\n </m:msup>\\n </m:math>\\n <jats:tex-math>{\\\\left(\\\\bar{\\\\rho },0,0)}^{T}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> at infinity, we also obtain the time decay rates of the solution by the combination of the energy method and the linear <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0131_eq_003.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mrow>\\n <m:mi>L</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>p</m:mi>\\n </m:mrow>\\n </m:msup>\\n </m:math>\\n <jats:tex-math>{L}^{p}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>-<jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0131_eq_004.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msup>\\n <m:mrow>\\n <m:mi>L</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>q</m:mi>\\n </m:mrow>\\n </m:msup>\\n </m:math>\\n <jats:tex-math>{L}^{q}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> decay estimates.</jats:p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0131\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0131","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

所研究的可压缩纳维-斯托克斯-斯莫卢霍夫斯基方程涉及流体和粒子在宏观尺度上的混合行为。与 Chen 等人(Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Contin.Dyn.Syst.36 (2016),第 10 期,5287-5307)。进一步假设静止解 ( ρ s ( x ) , 0 , 0 ) T {\left({\rho }_{s}\left(x),0,0)}^{T} 在恒定状态 ( ρ ¯ , 0 , 0 ) 的一个小邻域内。 T {left(\bar{\rho},0,0)}^{T}在无穷远处,我们还可以通过能量法和线性 L p {L}^{p} 的结合得到解的时间衰减率。 - L q {L}^{q} 衰减估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global existence and decay estimates of the classical solution to the compressible Navier-Stokes-Smoluchowski equations in ℝ3
The compressible Navier-Stokes-Smoluchowski equations under investigation concern the behavior of the mixture of fluid and particles at a macroscopic scale. We devote to the existence of the global classical solution near the stationary solution based on the energy method under weaker conditions imposed on the external potential compared with Chen et al. (Global existence and time–decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations, Discrete Contin. Dyn. Syst. 36 (2016), no. 10, 5287–5307). Under further assumptions that the stationary solution ( ρ s ( x ) , 0 , 0 ) T {\left({\rho }_{s}\left(x),0,0)}^{T} is in a small neighborhood of the constant state ( ρ ¯ , 0 , 0 ) T {\left(\bar{\rho },0,0)}^{T} at infinity, we also obtain the time decay rates of the solution by the combination of the energy method and the linear L p {L}^{p} - L q {L}^{q} decay estimates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信