涉及不连续基尔霍夫函数的非局部问题的正解的存在性、唯一性、局部性和最小化特性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
B. Ricceri
{"title":"涉及不连续基尔霍夫函数的非局部问题的正解的存在性、唯一性、局部性和最小化特性","authors":"B. Ricceri","doi":"10.1515/anona-2023-0104","DOIUrl":null,"url":null,"abstract":"\n <jats:p>Let <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>⊂</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"bold\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>n</m:mi>\n </m:mrow>\n </m:msup>\n </m:math>\n <jats:tex-math>\\Omega \\subset {{\\bf{R}}}^{n}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>q</m:mi>\n <m:mo>∈</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">]</m:mo>\n <m:mrow>\n <m:mn>0</m:mn>\n <m:mo>,</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mo stretchy=\"false\">[</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>q\\in ]0,1{[}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>α</m:mi>\n <m:mo>∈</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi>L</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>∞</m:mi>\n </m:mrow>\n </m:msup>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>\\alpha \\in {L}^{\\infty }\\left(\\Omega )</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, with <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>α</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\alpha \\gt 0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>k</m:mi>\n <m:mo>∈</m:mo>\n <m:mi mathvariant=\"bold\">N</m:mi>\n </m:math>\n <jats:tex-math>k\\in {\\bf{N}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>. Then, the problem <jats:disp-formula id=\"j_anona-2023-0104_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0104_eq_006.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mfenced open=\"{\" close=\"\">\n <m:mrow>\n <m:mtable displaystyle=\"true\">\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mo>−</m:mo>\n <m:mi>tan</m:mi>\n <m:mfenced open=\"(\" close=\")\">\n <m:mrow>\n <m:munder>\n <m:mrow>\n <m:mstyle displaystyle=\"true\">\n <m:mo>∫</m:mo>\n </m:mstyle>\n </m:mrow>\n <m:mrow>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n </m:mrow>\n </m:munder>\n <m:mo>∣</m:mo>\n <m:mrow>\n <m:mo>∇</m:mo>\n </m:mrow>\n <m:mi>u</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo>∣</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msup>\n <m:mi mathvariant=\"normal\">d</m:mi>\n <m:mi>x</m:mi>\n </m:mrow>\n </m:mfenced>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:mi>α</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>q</m:mi>\n </m:mrow>\n </m:msup>\n <m:mspace width=\"1.0em\" />\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mi>u</m:mi>\n <m:mo>></m:mo>\n <m:mn>0</m:mn>\n <m:mspace width=\"1.0em\" />\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n ","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions\",\"authors\":\"B. Ricceri\",\"doi\":\"10.1515/anona-2023-0104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>Let <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0104_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n <m:mo>⊂</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"bold\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>n</m:mi>\\n </m:mrow>\\n </m:msup>\\n </m:math>\\n <jats:tex-math>\\\\Omega \\\\subset {{\\\\bf{R}}}^{n}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0104_eq_002.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>q</m:mi>\\n <m:mo>∈</m:mo>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">]</m:mo>\\n <m:mrow>\\n <m:mn>0</m:mn>\\n <m:mo>,</m:mo>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n <m:mo stretchy=\\\"false\\\">[</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:tex-math>q\\\\in ]0,1{[}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0104_eq_003.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>α</m:mi>\\n <m:mo>∈</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi>L</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>∞</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:tex-math>\\\\alpha \\\\in {L}^{\\\\infty }\\\\left(\\\\Omega )</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, with <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0104_eq_004.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>α</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>0</m:mn>\\n </m:math>\\n <jats:tex-math>\\\\alpha \\\\gt 0</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0104_eq_005.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>k</m:mi>\\n <m:mo>∈</m:mo>\\n <m:mi mathvariant=\\\"bold\\\">N</m:mi>\\n </m:math>\\n <jats:tex-math>k\\\\in {\\\\bf{N}}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>. Then, the problem <jats:disp-formula id=\\\"j_anona-2023-0104_eq_001\\\">\\n <jats:alternatives>\\n <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0104_eq_006.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <m:mfenced open=\\\"{\\\" close=\\\"\\\">\\n <m:mrow>\\n <m:mtable displaystyle=\\\"true\\\">\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mo>−</m:mo>\\n <m:mi>tan</m:mi>\\n <m:mfenced open=\\\"(\\\" close=\\\")\\\">\\n <m:mrow>\\n <m:munder>\\n <m:mrow>\\n <m:mstyle displaystyle=\\\"true\\\">\\n <m:mo>∫</m:mo>\\n </m:mstyle>\\n </m:mrow>\\n <m:mrow>\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n </m:mrow>\\n </m:munder>\\n <m:mo>∣</m:mo>\\n <m:mrow>\\n <m:mo>∇</m:mo>\\n </m:mrow>\\n <m:mi>u</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mo>∣</m:mo>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mi mathvariant=\\\"normal\\\">d</m:mi>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n </m:mfenced>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mo>=</m:mo>\\n <m:mi>α</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>q</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mspace width=\\\"1.0em\\\" />\\n </m:mtd>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mstyle>\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mtext>in</m:mtext>\\n <m:mspace width=\\\"0.1em\\\" />\\n </m:mstyle>\\n <m:mspace width=\\\"0.33em\\\" />\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n </m:mtd>\\n </m:mtr>\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mi>u</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>0</m:mn>\\n <m:mspace width=\\\"1.0em\\\" />\\n </m:mtd>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mstyle>\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mtext>in</m:mtext>\\n \",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0104\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0104","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

让 Ω ⊂ R n\Omega \子集 {{\bf{R}}}^{n} 是一个光滑有界域。本文将证明一个结果,下面是其副产品:设 q∈ ] 0 , 1 [ q\in ]0,1{[} , α ∈ L ∞ ( Ω ) \α > 0 \alpha \gt 0 , and k ∈ N k\in {bf{N}}. .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions
Let Ω R n \Omega \subset {{\bf{R}}}^{n} be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let q ] 0 , 1 [ q\in ]0,1{[} , α L ( Ω ) \alpha \in {L}^{\infty }\left(\Omega ) , with α > 0 \alpha \gt 0 , and k N k\in {\bf{N}} . Then, the problem tan Ω u ( x ) 2 d x Δ u = α ( x ) u q in Ω u > 0 in
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信