Matthew D. Koslovsky, Kelley Pettee Gabriel, Michael Businelle, David W. Wetter, Darla E. Kendzor
{"title":"多模态移动医疗数据的动态功能变量选择","authors":"Matthew D. Koslovsky, Kelley Pettee Gabriel, Michael Businelle, David W. Wetter, Darla E. Kendzor","doi":"10.1214/24-ba1413","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":55398,"journal":{"name":"Bayesian Analysis","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Functional Variable Selection for Multimodal mHealth Data\",\"authors\":\"Matthew D. Koslovsky, Kelley Pettee Gabriel, Michael Businelle, David W. Wetter, Darla E. Kendzor\",\"doi\":\"10.1214/24-ba1413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":55398,\"journal\":{\"name\":\"Bayesian Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bayesian Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/24-ba1413\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bayesian Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-ba1413","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
期刊介绍:
Bayesian Analysis is an electronic journal of the International Society for Bayesian Analysis. It seeks to publish a wide range of articles that demonstrate or discuss Bayesian methods in some theoretical or applied context. The journal welcomes submissions involving presentation of new computational and statistical methods; critical reviews and discussions of existing approaches; historical perspectives; description of important scientific or policy application areas; case studies; and methods for experimental design, data collection, data sharing, or data mining.
Evaluation of submissions is based on importance of content and effectiveness of communication. Discussion papers are typically chosen by the Editor in Chief, or suggested by an Editor, among the regular submissions. In addition, the Journal encourages individual authors to submit manuscripts for consideration as discussion papers.