耦合非线性薛定谔系统的归一化峰值解的存在性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jing Yang
{"title":"耦合非线性薛定谔系统的归一化峰值解的存在性","authors":"Jing Yang","doi":"10.1515/anona-2023-0113","DOIUrl":null,"url":null,"abstract":"\n <jats:p>In this article, we study the following nonlinear Schrödinger system <jats:disp-formula id=\"j_anona-2023-0113_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0113_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mfenced open=\"{\" close=\"\">\n <m:mrow>\n <m:mtable displaystyle=\"true\">\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:msub>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msub>\n <m:mo>+</m:mo>\n <m:msub>\n <m:mrow>\n <m:mi>V</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msub>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msub>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msub>\n <m:mo>=</m:mo>\n <m:mi>α</m:mi>\n <m:msub>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msub>\n <m:msub>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msub>\n <m:mo>+</m:mo>\n <m:mi>μ</m:mi>\n <m:msub>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:msub>\n <m:mo>,</m:mo>\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mi>x</m:mi>\n <m:mo>∈</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>4</m:mn>\n </m:mrow>\n </m:msup>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:msub>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msub>\n <m:mo>+</m:mo>\n <m:msub>\n <m:mrow>\n <m:mi>V</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msub>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:msub>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msub>\n <m:mo>=</m:mo>\n <m:mfrac>\n <m:mrow>\n <m:mi>α</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:mfrac>\n <m:msubsup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>1</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msubsup>\n <m:mo>+</m:mo>\n <m:mi>β</m:mi>\n <m:msubsup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msubsup>\n <m:mo>+</m:mo>\n <m:mi>μ</m:mi>\n <m:msub>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msub>\n <m:mo>,</m:mo>\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mi>x</m:mi>\n <m:mo>∈</m:mo>\n <m:msup>\n <m:mrow>\n <m:m","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of normalized peak solutions for a coupled nonlinear Schrödinger system\",\"authors\":\"Jing Yang\",\"doi\":\"10.1515/anona-2023-0113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>In this article, we study the following nonlinear Schrödinger system <jats:disp-formula id=\\\"j_anona-2023-0113_eq_001\\\">\\n <jats:alternatives>\\n <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0113_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <m:mfenced open=\\\"{\\\" close=\\\"\\\">\\n <m:mrow>\\n <m:mtable displaystyle=\\\"true\\\">\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mo>−</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:msub>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n </m:msub>\\n <m:mo>+</m:mo>\\n <m:msub>\\n <m:mrow>\\n <m:mi>V</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n </m:msub>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:msub>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n </m:msub>\\n <m:mo>=</m:mo>\\n <m:mi>α</m:mi>\\n <m:msub>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n </m:msub>\\n <m:msub>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msub>\\n <m:mo>+</m:mo>\\n <m:mi>μ</m:mi>\\n <m:msub>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n </m:msub>\\n <m:mo>,</m:mo>\\n </m:mtd>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mi>x</m:mi>\\n <m:mo>∈</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>4</m:mn>\\n </m:mrow>\\n </m:msup>\\n <m:mo>,</m:mo>\\n </m:mtd>\\n </m:mtr>\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mo>−</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:msub>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msub>\\n <m:mo>+</m:mo>\\n <m:msub>\\n <m:mrow>\\n <m:mi>V</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msub>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:msub>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msub>\\n <m:mo>=</m:mo>\\n <m:mfrac>\\n <m:mrow>\\n <m:mi>α</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:mfrac>\\n <m:msubsup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>1</m:mn>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msubsup>\\n <m:mo>+</m:mo>\\n <m:mi>β</m:mi>\\n <m:msubsup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msubsup>\\n <m:mo>+</m:mo>\\n <m:mi>μ</m:mi>\\n <m:msub>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n </m:msub>\\n <m:mo>,</m:mo>\\n </m:mtd>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mi>x</m:mi>\\n <m:mo>∈</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:m\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0113\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0113","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究以下非线性薛定谔系统 - Δ u 1 + V 1 ( x ) u 1 = α u 1 u 2 + μ u 1 , x∈ R 4 , - Δ u 2 + V 2 ( x )
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of normalized peak solutions for a coupled nonlinear Schrödinger system
In this article, we study the following nonlinear Schrödinger system Δ u 1 + V 1 ( x ) u 1 = α u 1 u 2 + μ u 1 , x R 4 , Δ u 2 + V 2 ( x ) u 2 = α 2 u 1 2 + β u 2 2 + μ u 2 , x
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信