晶格杨-米尔斯有限 N 主环方程的新推导

IF 1.3 3区 数学 Q2 STATISTICS & PROBABILITY
Hao Shen, Scott A. Smith, Rongchan Zhu
{"title":"晶格杨-米尔斯有限 N 主环方程的新推导","authors":"Hao Shen, Scott A. Smith, Rongchan Zhu","doi":"10.1214/24-ejp1090","DOIUrl":null,"url":null,"abstract":". We give a new derivation of the finite N master loop equation for lattice Yang-Mills theory with structure group SO ( N ), U ( N ) or SU ( N ). The SO ( N ) case was initially proved by Chatterjee in [Cha19a], and SU ( N ) was analyzed in a follow-up work by Jafarov [Jaf16]. Our approach is based on the Langevin dynamic, an SDE on the manifold of configurations, and yields a simple proof via Itˆo’s formula.","PeriodicalId":50538,"journal":{"name":"Electronic Journal of Probability","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new derivation of the finite N master loop equation for lattice Yang-Mills\",\"authors\":\"Hao Shen, Scott A. Smith, Rongchan Zhu\",\"doi\":\"10.1214/24-ejp1090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We give a new derivation of the finite N master loop equation for lattice Yang-Mills theory with structure group SO ( N ), U ( N ) or SU ( N ). The SO ( N ) case was initially proved by Chatterjee in [Cha19a], and SU ( N ) was analyzed in a follow-up work by Jafarov [Jaf16]. Our approach is based on the Langevin dynamic, an SDE on the manifold of configurations, and yields a simple proof via Itˆo’s formula.\",\"PeriodicalId\":50538,\"journal\":{\"name\":\"Electronic Journal of Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/24-ejp1090\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/24-ejp1090","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

.我们给出了结构群为 SO ( N ) 、U ( N ) 或 SU ( N ) 的晶格杨-米尔斯理论的非 N 主环方程的新推导。SO ( N ) 的情况最初由查特吉在[Cha19a]中证明,而 SU ( N ) 则由贾法洛夫在后续工作[Jaf16]中分析。我们的方法基于朗之文动态,即构型流形上的 SDE,并通过伊特奥公式得到了简单的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new derivation of the finite N master loop equation for lattice Yang-Mills
. We give a new derivation of the finite N master loop equation for lattice Yang-Mills theory with structure group SO ( N ), U ( N ) or SU ( N ). The SO ( N ) case was initially proved by Chatterjee in [Cha19a], and SU ( N ) was analyzed in a follow-up work by Jafarov [Jaf16]. Our approach is based on the Langevin dynamic, an SDE on the manifold of configurations, and yields a simple proof via Itˆo’s formula.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Probability
Electronic Journal of Probability 数学-统计学与概率论
CiteScore
1.80
自引率
7.10%
发文量
119
审稿时长
4-8 weeks
期刊介绍: The Electronic Journal of Probability publishes full-size research articles in probability theory. The Electronic Communications in Probability (ECP), a sister journal of EJP, publishes short notes and research announcements in probability theory. Both ECP and EJP are official journals of the Institute of Mathematical Statistics and the Bernoulli society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信