求助PDF
{"title":"关于边界上有吸收项和 L 1 数据的非线性罗宾问题","authors":"Francesco Della Pietra, Francescantonio Oliva, Sergio Segura de León","doi":"10.1515/anona-2023-0118","DOIUrl":null,"url":null,"abstract":"\n <jats:p>We deal with existence and uniqueness of nonnegative solutions to: <jats:disp-formula id=\"j_anona-2023-0118_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mfenced open=\"{\" close=\"\">\n <m:mrow>\n <m:mtable displaystyle=\"true\">\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:mi>f</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>,</m:mo>\n <m:mspace width=\"1.0em\" />\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mfrac>\n <m:mrow>\n <m:mo>∂</m:mo>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mo>∂</m:mo>\n <m:mi>ν</m:mi>\n </m:mrow>\n </m:mfrac>\n <m:mo>+</m:mo>\n <m:mi>λ</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:mfrac>\n <m:mrow>\n <m:mi>g</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>η</m:mi>\n </m:mrow>\n </m:msup>\n </m:mrow>\n </m:mfrac>\n <m:mo>,</m:mo>\n <m:mspace width=\"1.0em\" />\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>on</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:mo>∂</m:mo>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n </m:mtable>\n </m:mrow>\n </m:mfenced>\n </m:math>\n <jats:tex-math>\\left\\{\\begin{array}{ll}-\\Delta u=f\\left(x),\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\\\ \\frac{\\partial u}{\\partial \\nu }+\\lambda \\left(x)u=\\frac{g\\left(x)}{{u}^{\\eta }},\\hspace{1.0em}& \\hspace{0.1em}\\text{on}\\hspace{0.1em}\\hspace{0.33em}\\partial \\Omega ,\\end{array}\\right.</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>η</m:mi>\n <m:mo>≥</m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\eta \\ge 0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>f</m:mi>\n <m:mo>,</m:mo>\n <m:mi>λ</m:mi>\n </m:math>\n <jats:tex-math>f,\\lambda </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>g</m:mi>\n </m:math>\n <jats:tex-math>g</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> are the nonnegative integrable functions. The set <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>⊂</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>N</m:mi>\n </m:mrow>\n </m:msup>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>N</m:mi>\n <m:mo>></m:mo>\n <m:mn>2</m:mn>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>\\Omega \\subset {{\\mathbb{R}}}^{N}\\left(N\\gt 2)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is open and bounded with smooth boundary, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_006.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>ν</m:mi>\n </m:math>\n <jats:tex-math>\\nu </jats:tex-math>\n </jats:alternatives>\n </jat","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a nonlinear Robin problem with an absorption term on the boundary and L\\n 1 data\",\"authors\":\"Francesco Della Pietra, Francescantonio Oliva, Sergio Segura de León\",\"doi\":\"10.1515/anona-2023-0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>We deal with existence and uniqueness of nonnegative solutions to: <jats:disp-formula id=\\\"j_anona-2023-0118_eq_001\\\">\\n <jats:alternatives>\\n <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <m:mfenced open=\\\"{\\\" close=\\\"\\\">\\n <m:mrow>\\n <m:mtable displaystyle=\\\"true\\\">\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mo>−</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mo>=</m:mo>\\n <m:mi>f</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mo>,</m:mo>\\n <m:mspace width=\\\"1.0em\\\" />\\n </m:mtd>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mstyle>\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mtext>in</m:mtext>\\n <m:mspace width=\\\"0.1em\\\" />\\n </m:mstyle>\\n <m:mspace width=\\\"0.33em\\\" />\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n <m:mo>,</m:mo>\\n </m:mtd>\\n </m:mtr>\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mfrac>\\n <m:mrow>\\n <m:mo>∂</m:mo>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mo>∂</m:mo>\\n <m:mi>ν</m:mi>\\n </m:mrow>\\n </m:mfrac>\\n <m:mo>+</m:mo>\\n <m:mi>λ</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mi>u</m:mi>\\n <m:mo>=</m:mo>\\n <m:mfrac>\\n <m:mrow>\\n <m:mi>g</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:mrow>\\n <m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>η</m:mi>\\n </m:mrow>\\n </m:msup>\\n </m:mrow>\\n </m:mfrac>\\n <m:mo>,</m:mo>\\n <m:mspace width=\\\"1.0em\\\" />\\n </m:mtd>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mstyle>\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mtext>on</m:mtext>\\n <m:mspace width=\\\"0.1em\\\" />\\n </m:mstyle>\\n <m:mspace width=\\\"0.33em\\\" />\\n <m:mo>∂</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n <m:mo>,</m:mo>\\n </m:mtd>\\n </m:mtr>\\n </m:mtable>\\n </m:mrow>\\n </m:mfenced>\\n </m:math>\\n <jats:tex-math>\\\\left\\\\{\\\\begin{array}{ll}-\\\\Delta u=f\\\\left(x),\\\\hspace{1.0em}& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\Omega ,\\\\\\\\ \\\\frac{\\\\partial u}{\\\\partial \\\\nu }+\\\\lambda \\\\left(x)u=\\\\frac{g\\\\left(x)}{{u}^{\\\\eta }},\\\\hspace{1.0em}& \\\\hspace{0.1em}\\\\text{on}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\partial \\\\Omega ,\\\\end{array}\\\\right.</jats:tex-math>\\n </jats:alternatives>\\n </jats:disp-formula> where <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_002.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>η</m:mi>\\n <m:mo>≥</m:mo>\\n <m:mn>0</m:mn>\\n </m:math>\\n <jats:tex-math>\\\\eta \\\\ge 0</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_003.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>f</m:mi>\\n <m:mo>,</m:mo>\\n <m:mi>λ</m:mi>\\n </m:math>\\n <jats:tex-math>f,\\\\lambda </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_004.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>g</m:mi>\\n </m:math>\\n <jats:tex-math>g</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> are the nonnegative integrable functions. The set <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_005.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n <m:mo>⊂</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>N</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>N</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:tex-math>\\\\Omega \\\\subset {{\\\\mathbb{R}}}^{N}\\\\left(N\\\\gt 2)</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> is open and bounded with smooth boundary, and <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_006.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>ν</m:mi>\\n </m:math>\\n <jats:tex-math>\\\\nu </jats:tex-math>\\n </jats:alternatives>\\n </jat\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0118\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0118","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
On a nonlinear Robin problem with an absorption term on the boundary and L
1 data
We deal with existence and uniqueness of nonnegative solutions to:
−
Δ
u
=
f
(
x
)
,
in
Ω
,
∂
u
∂
ν
+
λ
(
x
)
u
=
g
(
x
)
u
η
,
on
∂
Ω
,
\left\{\begin{array}{ll}-\Delta u=f\left(x),\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ \frac{\partial u}{\partial \nu }+\lambda \left(x)u=\frac{g\left(x)}{{u}^{\eta }},\hspace{1.0em}& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial \Omega ,\end{array}\right.
where
η
≥
0
\eta \ge 0
and
f
,
λ
f,\lambda
, and
g
g
are the nonnegative integrable functions. The set
Ω
⊂
R
N
(
N
>
2
)
\Omega \subset {{\mathbb{R}}}^{N}\left(N\gt 2)
is open and bounded with smooth boundary, and
ν
\nu