求助PDF
{"title":"关于边界上有吸收项和 L 1 数据的非线性罗宾问题","authors":"Francesco Della Pietra, Francescantonio Oliva, Sergio Segura de León","doi":"10.1515/anona-2023-0118","DOIUrl":null,"url":null,"abstract":"\n <jats:p>We deal with existence and uniqueness of nonnegative solutions to: <jats:disp-formula id=\"j_anona-2023-0118_eq_001\">\n <jats:alternatives>\n <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_001.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\">\n <m:mfenced open=\"{\" close=\"\">\n <m:mrow>\n <m:mtable displaystyle=\"true\">\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mo>−</m:mo>\n <m:mi mathvariant=\"normal\">Δ</m:mi>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:mi>f</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mo>,</m:mo>\n <m:mspace width=\"1.0em\" />\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>in</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n <m:mtr>\n <m:mtd columnalign=\"left\">\n <m:mfrac>\n <m:mrow>\n <m:mo>∂</m:mo>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mo>∂</m:mo>\n <m:mi>ν</m:mi>\n </m:mrow>\n </m:mfrac>\n <m:mo>+</m:mo>\n <m:mi>λ</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n <m:mi>u</m:mi>\n <m:mo>=</m:mo>\n <m:mfrac>\n <m:mrow>\n <m:mi>g</m:mi>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>x</m:mi>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mi>u</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>η</m:mi>\n </m:mrow>\n </m:msup>\n </m:mrow>\n </m:mfrac>\n <m:mo>,</m:mo>\n <m:mspace width=\"1.0em\" />\n </m:mtd>\n <m:mtd columnalign=\"left\">\n <m:mstyle>\n <m:mspace width=\"0.1em\" />\n <m:mtext>on</m:mtext>\n <m:mspace width=\"0.1em\" />\n </m:mstyle>\n <m:mspace width=\"0.33em\" />\n <m:mo>∂</m:mo>\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>,</m:mo>\n </m:mtd>\n </m:mtr>\n </m:mtable>\n </m:mrow>\n </m:mfenced>\n </m:math>\n <jats:tex-math>\\left\\{\\begin{array}{ll}-\\Delta u=f\\left(x),\\hspace{1.0em}& \\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}\\Omega ,\\\\ \\frac{\\partial u}{\\partial \\nu }+\\lambda \\left(x)u=\\frac{g\\left(x)}{{u}^{\\eta }},\\hspace{1.0em}& \\hspace{0.1em}\\text{on}\\hspace{0.1em}\\hspace{0.33em}\\partial \\Omega ,\\end{array}\\right.</jats:tex-math>\n </jats:alternatives>\n </jats:disp-formula> where <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_002.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>η</m:mi>\n <m:mo>≥</m:mo>\n <m:mn>0</m:mn>\n </m:math>\n <jats:tex-math>\\eta \\ge 0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_003.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>f</m:mi>\n <m:mo>,</m:mo>\n <m:mi>λ</m:mi>\n </m:math>\n <jats:tex-math>f,\\lambda </jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_004.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>g</m:mi>\n </m:math>\n <jats:tex-math>g</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> are the nonnegative integrable functions. The set <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_005.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi mathvariant=\"normal\">Ω</m:mi>\n <m:mo>⊂</m:mo>\n <m:msup>\n <m:mrow>\n <m:mi mathvariant=\"double-struck\">R</m:mi>\n </m:mrow>\n <m:mrow>\n <m:mi>N</m:mi>\n </m:mrow>\n </m:msup>\n <m:mrow>\n <m:mo>(</m:mo>\n <m:mrow>\n <m:mi>N</m:mi>\n <m:mo>></m:mo>\n <m:mn>2</m:mn>\n </m:mrow>\n <m:mo>)</m:mo>\n </m:mrow>\n </m:math>\n <jats:tex-math>\\Omega \\subset {{\\mathbb{R}}}^{N}\\left(N\\gt 2)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> is open and bounded with smooth boundary, and <jats:inline-formula>\n <jats:alternatives>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_anona-2023-0118_eq_006.png\" />\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mi>ν</m:mi>\n </m:math>\n <jats:tex-math>\\nu </jats:tex-math>\n </jats:alternatives>\n </jat","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"21 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a nonlinear Robin problem with an absorption term on the boundary and L\\n 1 data\",\"authors\":\"Francesco Della Pietra, Francescantonio Oliva, Sergio Segura de León\",\"doi\":\"10.1515/anona-2023-0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>We deal with existence and uniqueness of nonnegative solutions to: <jats:disp-formula id=\\\"j_anona-2023-0118_eq_001\\\">\\n <jats:alternatives>\\n <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_001.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\">\\n <m:mfenced open=\\\"{\\\" close=\\\"\\\">\\n <m:mrow>\\n <m:mtable displaystyle=\\\"true\\\">\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mo>−</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">Δ</m:mi>\\n <m:mi>u</m:mi>\\n <m:mo>=</m:mo>\\n <m:mi>f</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mo>,</m:mo>\\n <m:mspace width=\\\"1.0em\\\" />\\n </m:mtd>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mstyle>\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mtext>in</m:mtext>\\n <m:mspace width=\\\"0.1em\\\" />\\n </m:mstyle>\\n <m:mspace width=\\\"0.33em\\\" />\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n <m:mo>,</m:mo>\\n </m:mtd>\\n </m:mtr>\\n <m:mtr>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mfrac>\\n <m:mrow>\\n <m:mo>∂</m:mo>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mo>∂</m:mo>\\n <m:mi>ν</m:mi>\\n </m:mrow>\\n </m:mfrac>\\n <m:mo>+</m:mo>\\n <m:mi>λ</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n <m:mi>u</m:mi>\\n <m:mo>=</m:mo>\\n <m:mfrac>\\n <m:mrow>\\n <m:mi>g</m:mi>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>x</m:mi>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:mrow>\\n <m:mrow>\\n <m:msup>\\n <m:mrow>\\n <m:mi>u</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>η</m:mi>\\n </m:mrow>\\n </m:msup>\\n </m:mrow>\\n </m:mfrac>\\n <m:mo>,</m:mo>\\n <m:mspace width=\\\"1.0em\\\" />\\n </m:mtd>\\n <m:mtd columnalign=\\\"left\\\">\\n <m:mstyle>\\n <m:mspace width=\\\"0.1em\\\" />\\n <m:mtext>on</m:mtext>\\n <m:mspace width=\\\"0.1em\\\" />\\n </m:mstyle>\\n <m:mspace width=\\\"0.33em\\\" />\\n <m:mo>∂</m:mo>\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n <m:mo>,</m:mo>\\n </m:mtd>\\n </m:mtr>\\n </m:mtable>\\n </m:mrow>\\n </m:mfenced>\\n </m:math>\\n <jats:tex-math>\\\\left\\\\{\\\\begin{array}{ll}-\\\\Delta u=f\\\\left(x),\\\\hspace{1.0em}& \\\\hspace{0.1em}\\\\text{in}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\Omega ,\\\\\\\\ \\\\frac{\\\\partial u}{\\\\partial \\\\nu }+\\\\lambda \\\\left(x)u=\\\\frac{g\\\\left(x)}{{u}^{\\\\eta }},\\\\hspace{1.0em}& \\\\hspace{0.1em}\\\\text{on}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\partial \\\\Omega ,\\\\end{array}\\\\right.</jats:tex-math>\\n </jats:alternatives>\\n </jats:disp-formula> where <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_002.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>η</m:mi>\\n <m:mo>≥</m:mo>\\n <m:mn>0</m:mn>\\n </m:math>\\n <jats:tex-math>\\\\eta \\\\ge 0</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> and <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_003.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>f</m:mi>\\n <m:mo>,</m:mo>\\n <m:mi>λ</m:mi>\\n </m:math>\\n <jats:tex-math>f,\\\\lambda </jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, and <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_004.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>g</m:mi>\\n </m:math>\\n <jats:tex-math>g</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> are the nonnegative integrable functions. The set <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_005.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi mathvariant=\\\"normal\\\">Ω</m:mi>\\n <m:mo>⊂</m:mo>\\n <m:msup>\\n <m:mrow>\\n <m:mi mathvariant=\\\"double-struck\\\">R</m:mi>\\n </m:mrow>\\n <m:mrow>\\n <m:mi>N</m:mi>\\n </m:mrow>\\n </m:msup>\\n <m:mrow>\\n <m:mo>(</m:mo>\\n <m:mrow>\\n <m:mi>N</m:mi>\\n <m:mo>></m:mo>\\n <m:mn>2</m:mn>\\n </m:mrow>\\n <m:mo>)</m:mo>\\n </m:mrow>\\n </m:math>\\n <jats:tex-math>\\\\Omega \\\\subset {{\\\\mathbb{R}}}^{N}\\\\left(N\\\\gt 2)</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> is open and bounded with smooth boundary, and <jats:inline-formula>\\n <jats:alternatives>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_anona-2023-0118_eq_006.png\\\" />\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mi>ν</m:mi>\\n </m:math>\\n <jats:tex-math>\\\\nu </jats:tex-math>\\n </jats:alternatives>\\n </jat\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"21 2\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2023-0118\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2023-0118","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
引用
批量引用
On a nonlinear Robin problem with an absorption term on the boundary and L
1 data
We deal with existence and uniqueness of nonnegative solutions to:
−
Δ
u
=
f
(
x
)
,
in
Ω
,
∂
u
∂
ν
+
λ
(
x
)
u
=
g
(
x
)
u
η
,
on
∂
Ω
,
\left\{\begin{array}{ll}-\Delta u=f\left(x),\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ \frac{\partial u}{\partial \nu }+\lambda \left(x)u=\frac{g\left(x)}{{u}^{\eta }},\hspace{1.0em}& \hspace{0.1em}\text{on}\hspace{0.1em}\hspace{0.33em}\partial \Omega ,\end{array}\right.
where
η
≥
0
\eta \ge 0
and
f
,
λ
f,\lambda
, and
g
g
are the nonnegative integrable functions. The set
Ω
⊂
R
N
(
N
>
2
)
\Omega \subset {{\mathbb{R}}}^{N}\left(N\gt 2)
is open and bounded with smooth boundary, and
ν
\nu
来源期刊
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico