基于多个风电场时空相关性的联合缺失功率数据恢复方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Haochen Li, Liqun Liu, Qiusheng He
{"title":"基于多个风电场时空相关性的联合缺失功率数据恢复方法","authors":"Haochen Li, Liqun Liu, Qiusheng He","doi":"10.1063/5.0176922","DOIUrl":null,"url":null,"abstract":"In reality, wind power data are often accompanied by data losses, which can affect the accurate prediction of wind power and subsequently impact the real-time scheduling of the power system. Existing methods for recovering missing data primarily consider the environmental conditions of individual wind farms, thereby overlooking the spatiotemporal correlations between neighboring wind farms, which significantly compromise their recovery effectiveness. In this paper, a joint missing data recovery model based on power data from adjacent wind farms is proposed. At first, a spatial–temporal module (STM) is designed using a combination of graph convolution network and recurrent neural networks to learn spatiotemporal dependencies and similarities. Subsequently, to provide a solid computational foundation for the STM, a Euclidean-directed graph based on Granger causality is constructed to reflect the hidden spatiotemporal information in the data. Finally, comprehensive tests on data recovery for both missing completely at random and short-term continuous missing are conducted on a real-world dataset. The results demonstrate that the proposed model exhibits a significant advantage in missing data recovery compared to baseline models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"2016 6","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A joint missing power data recovery method based on the spatiotemporal correlation of multiple wind farms\",\"authors\":\"Haochen Li, Liqun Liu, Qiusheng He\",\"doi\":\"10.1063/5.0176922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In reality, wind power data are often accompanied by data losses, which can affect the accurate prediction of wind power and subsequently impact the real-time scheduling of the power system. Existing methods for recovering missing data primarily consider the environmental conditions of individual wind farms, thereby overlooking the spatiotemporal correlations between neighboring wind farms, which significantly compromise their recovery effectiveness. In this paper, a joint missing data recovery model based on power data from adjacent wind farms is proposed. At first, a spatial–temporal module (STM) is designed using a combination of graph convolution network and recurrent neural networks to learn spatiotemporal dependencies and similarities. Subsequently, to provide a solid computational foundation for the STM, a Euclidean-directed graph based on Granger causality is constructed to reflect the hidden spatiotemporal information in the data. Finally, comprehensive tests on data recovery for both missing completely at random and short-term continuous missing are conducted on a real-world dataset. The results demonstrate that the proposed model exhibits a significant advantage in missing data recovery compared to baseline models.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"2016 6\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0176922\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0176922","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在现实中,风力发电数据往往伴随着数据丢失,这会影响风力发电的准确预测,进而影响电力系统的实时调度。现有的缺失数据恢复方法主要考虑单个风电场的环境条件,从而忽略了相邻风电场之间的时空相关性,这大大影响了其恢复效果。本文提出了一种基于相邻风电场电力数据的联合缺失数据恢复模型。首先,结合图卷积网络和递归神经网络设计了一个时空模块(STM)来学习时空依赖性和相似性。随后,为了给时空模块提供坚实的计算基础,构建了基于格兰杰因果关系的欧氏定向图,以反映数据中隐藏的时空信息。最后,在实际数据集上对完全随机缺失和短期连续缺失的数据恢复进行了全面测试。结果表明,与基线模型相比,所提出的模型在缺失数据恢复方面具有显著优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A joint missing power data recovery method based on the spatiotemporal correlation of multiple wind farms
In reality, wind power data are often accompanied by data losses, which can affect the accurate prediction of wind power and subsequently impact the real-time scheduling of the power system. Existing methods for recovering missing data primarily consider the environmental conditions of individual wind farms, thereby overlooking the spatiotemporal correlations between neighboring wind farms, which significantly compromise their recovery effectiveness. In this paper, a joint missing data recovery model based on power data from adjacent wind farms is proposed. At first, a spatial–temporal module (STM) is designed using a combination of graph convolution network and recurrent neural networks to learn spatiotemporal dependencies and similarities. Subsequently, to provide a solid computational foundation for the STM, a Euclidean-directed graph based on Granger causality is constructed to reflect the hidden spatiotemporal information in the data. Finally, comprehensive tests on data recovery for both missing completely at random and short-term continuous missing are conducted on a real-world dataset. The results demonstrate that the proposed model exhibits a significant advantage in missing data recovery compared to baseline models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信