{"title":"基于多个风电场时空相关性的联合缺失功率数据恢复方法","authors":"Haochen Li, Liqun Liu, Qiusheng He","doi":"10.1063/5.0176922","DOIUrl":null,"url":null,"abstract":"In reality, wind power data are often accompanied by data losses, which can affect the accurate prediction of wind power and subsequently impact the real-time scheduling of the power system. Existing methods for recovering missing data primarily consider the environmental conditions of individual wind farms, thereby overlooking the spatiotemporal correlations between neighboring wind farms, which significantly compromise their recovery effectiveness. In this paper, a joint missing data recovery model based on power data from adjacent wind farms is proposed. At first, a spatial–temporal module (STM) is designed using a combination of graph convolution network and recurrent neural networks to learn spatiotemporal dependencies and similarities. Subsequently, to provide a solid computational foundation for the STM, a Euclidean-directed graph based on Granger causality is constructed to reflect the hidden spatiotemporal information in the data. Finally, comprehensive tests on data recovery for both missing completely at random and short-term continuous missing are conducted on a real-world dataset. The results demonstrate that the proposed model exhibits a significant advantage in missing data recovery compared to baseline models.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A joint missing power data recovery method based on the spatiotemporal correlation of multiple wind farms\",\"authors\":\"Haochen Li, Liqun Liu, Qiusheng He\",\"doi\":\"10.1063/5.0176922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In reality, wind power data are often accompanied by data losses, which can affect the accurate prediction of wind power and subsequently impact the real-time scheduling of the power system. Existing methods for recovering missing data primarily consider the environmental conditions of individual wind farms, thereby overlooking the spatiotemporal correlations between neighboring wind farms, which significantly compromise their recovery effectiveness. In this paper, a joint missing data recovery model based on power data from adjacent wind farms is proposed. At first, a spatial–temporal module (STM) is designed using a combination of graph convolution network and recurrent neural networks to learn spatiotemporal dependencies and similarities. Subsequently, to provide a solid computational foundation for the STM, a Euclidean-directed graph based on Granger causality is constructed to reflect the hidden spatiotemporal information in the data. Finally, comprehensive tests on data recovery for both missing completely at random and short-term continuous missing are conducted on a real-world dataset. The results demonstrate that the proposed model exhibits a significant advantage in missing data recovery compared to baseline models.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0176922\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0176922","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
A joint missing power data recovery method based on the spatiotemporal correlation of multiple wind farms
In reality, wind power data are often accompanied by data losses, which can affect the accurate prediction of wind power and subsequently impact the real-time scheduling of the power system. Existing methods for recovering missing data primarily consider the environmental conditions of individual wind farms, thereby overlooking the spatiotemporal correlations between neighboring wind farms, which significantly compromise their recovery effectiveness. In this paper, a joint missing data recovery model based on power data from adjacent wind farms is proposed. At first, a spatial–temporal module (STM) is designed using a combination of graph convolution network and recurrent neural networks to learn spatiotemporal dependencies and similarities. Subsequently, to provide a solid computational foundation for the STM, a Euclidean-directed graph based on Granger causality is constructed to reflect the hidden spatiotemporal information in the data. Finally, comprehensive tests on data recovery for both missing completely at random and short-term continuous missing are conducted on a real-world dataset. The results demonstrate that the proposed model exhibits a significant advantage in missing data recovery compared to baseline models.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy