{"title":"基于多个风电场时空相关性的联合缺失功率数据恢复方法","authors":"Haochen Li, Liqun Liu, Qiusheng He","doi":"10.1063/5.0176922","DOIUrl":null,"url":null,"abstract":"In reality, wind power data are often accompanied by data losses, which can affect the accurate prediction of wind power and subsequently impact the real-time scheduling of the power system. Existing methods for recovering missing data primarily consider the environmental conditions of individual wind farms, thereby overlooking the spatiotemporal correlations between neighboring wind farms, which significantly compromise their recovery effectiveness. In this paper, a joint missing data recovery model based on power data from adjacent wind farms is proposed. At first, a spatial–temporal module (STM) is designed using a combination of graph convolution network and recurrent neural networks to learn spatiotemporal dependencies and similarities. Subsequently, to provide a solid computational foundation for the STM, a Euclidean-directed graph based on Granger causality is constructed to reflect the hidden spatiotemporal information in the data. Finally, comprehensive tests on data recovery for both missing completely at random and short-term continuous missing are conducted on a real-world dataset. The results demonstrate that the proposed model exhibits a significant advantage in missing data recovery compared to baseline models.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"2016 6","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A joint missing power data recovery method based on the spatiotemporal correlation of multiple wind farms\",\"authors\":\"Haochen Li, Liqun Liu, Qiusheng He\",\"doi\":\"10.1063/5.0176922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In reality, wind power data are often accompanied by data losses, which can affect the accurate prediction of wind power and subsequently impact the real-time scheduling of the power system. Existing methods for recovering missing data primarily consider the environmental conditions of individual wind farms, thereby overlooking the spatiotemporal correlations between neighboring wind farms, which significantly compromise their recovery effectiveness. In this paper, a joint missing data recovery model based on power data from adjacent wind farms is proposed. At first, a spatial–temporal module (STM) is designed using a combination of graph convolution network and recurrent neural networks to learn spatiotemporal dependencies and similarities. Subsequently, to provide a solid computational foundation for the STM, a Euclidean-directed graph based on Granger causality is constructed to reflect the hidden spatiotemporal information in the data. Finally, comprehensive tests on data recovery for both missing completely at random and short-term continuous missing are conducted on a real-world dataset. The results demonstrate that the proposed model exhibits a significant advantage in missing data recovery compared to baseline models.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"2016 6\",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0176922\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0176922","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A joint missing power data recovery method based on the spatiotemporal correlation of multiple wind farms
In reality, wind power data are often accompanied by data losses, which can affect the accurate prediction of wind power and subsequently impact the real-time scheduling of the power system. Existing methods for recovering missing data primarily consider the environmental conditions of individual wind farms, thereby overlooking the spatiotemporal correlations between neighboring wind farms, which significantly compromise their recovery effectiveness. In this paper, a joint missing data recovery model based on power data from adjacent wind farms is proposed. At first, a spatial–temporal module (STM) is designed using a combination of graph convolution network and recurrent neural networks to learn spatiotemporal dependencies and similarities. Subsequently, to provide a solid computational foundation for the STM, a Euclidean-directed graph based on Granger causality is constructed to reflect the hidden spatiotemporal information in the data. Finally, comprehensive tests on data recovery for both missing completely at random and short-term continuous missing are conducted on a real-world dataset. The results demonstrate that the proposed model exhibits a significant advantage in missing data recovery compared to baseline models.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.