{"title":"冶金过程自动化机器人的三维空间运动学","authors":"Valentin Slavov, Verjinia Aleksandrova","doi":"10.59957/jctm.v59.i2.2024.25","DOIUrl":null,"url":null,"abstract":"This paper presents the main results of a study on the kinematics in 3D space of a robot used for process automation in metallurgy. \nThe robot is studied as a mechanical system with twelve degrees of freedom consisting of seven rigid bodies. The transition matrices between the local and reference coordinate systems are defined in symbolic form. The position vectors and linear velocities of characteristic points are also defined in symbolic form as well as angular velocities of bodies from the mechanical system. A calculation algorithm is compiled and entered into a standard mathematical software product. Results are obtained in symbolic form and are valid for all mechanical systems with an analogous dynamic model. The kinematics results represent a basis for studying the dynamics and vibrations of a robot for automating processes in metallurgy.","PeriodicalId":38363,"journal":{"name":"Journal of Chemical Technology and Metallurgy","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D SPACE KINEMATICS OF A ROBOT FOR PROCESS AUTOMATION IN METALLURGY\",\"authors\":\"Valentin Slavov, Verjinia Aleksandrova\",\"doi\":\"10.59957/jctm.v59.i2.2024.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the main results of a study on the kinematics in 3D space of a robot used for process automation in metallurgy. \\nThe robot is studied as a mechanical system with twelve degrees of freedom consisting of seven rigid bodies. The transition matrices between the local and reference coordinate systems are defined in symbolic form. The position vectors and linear velocities of characteristic points are also defined in symbolic form as well as angular velocities of bodies from the mechanical system. A calculation algorithm is compiled and entered into a standard mathematical software product. Results are obtained in symbolic form and are valid for all mechanical systems with an analogous dynamic model. The kinematics results represent a basis for studying the dynamics and vibrations of a robot for automating processes in metallurgy.\",\"PeriodicalId\":38363,\"journal\":{\"name\":\"Journal of Chemical Technology and Metallurgy\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Technology and Metallurgy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59957/jctm.v59.i2.2024.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Technology and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59957/jctm.v59.i2.2024.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
3D SPACE KINEMATICS OF A ROBOT FOR PROCESS AUTOMATION IN METALLURGY
This paper presents the main results of a study on the kinematics in 3D space of a robot used for process automation in metallurgy.
The robot is studied as a mechanical system with twelve degrees of freedom consisting of seven rigid bodies. The transition matrices between the local and reference coordinate systems are defined in symbolic form. The position vectors and linear velocities of characteristic points are also defined in symbolic form as well as angular velocities of bodies from the mechanical system. A calculation algorithm is compiled and entered into a standard mathematical software product. Results are obtained in symbolic form and are valid for all mechanical systems with an analogous dynamic model. The kinematics results represent a basis for studying the dynamics and vibrations of a robot for automating processes in metallurgy.