{"title":"具有循环最大子群的非阿贝尔有限 $ p $ 群的共轭直径","authors":"Fawaz Aseeri, J. Kaspczyk","doi":"10.3934/math.2024524","DOIUrl":null,"url":null,"abstract":"Let $ G $ be a group. A subset $ S $ of $ G $ is said to normally generate $ G $ if $ G $ is the normal closure of $ S $ in $ G. $ In this case, any element of $ G $ can be written as a product of conjugates of elements of $ S $ and their inverses. If $ g\\in G $ and $ S $ is a normally generating subset of $ G, $ then we write $ \\| g\\|_{S} $ for the length of a shortest word in $ \\mbox{Conj}_{G}(S^{\\pm 1}): = \\{h^{-1}sh | h\\in G, s\\in S \\, \\mbox{or} \\, s{^{-1}}\\in S \\} $ needed to express $ g. $ For any normally generating subset $ S $ of $ G, $ we write $ \\|G\\|_{S} = \\mbox{sup}\\{\\|g\\|_{S} \\, |\\, \\, g\\in G\\}. $ Moreover, we write $ \\Delta(G) $ for the supremum of all $ \\|G\\|_{S}, $ where $ S $ is a finite normally generating subset of $ G, $ and we call $ \\Delta(G) $ the conjugacy diameter of $ G. $ In this paper, we derive the conjugacy diameters of the semidihedral $ 2 $-groups, the generalized quaternion groups and the modular $ p $-groups. This is a natural step after the determination of the conjugacy diameters of dihedral groups.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The conjugacy diameters of non-abelian finite $ p $-groups with cyclic maximal subgroups\",\"authors\":\"Fawaz Aseeri, J. Kaspczyk\",\"doi\":\"10.3934/math.2024524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $ G $ be a group. A subset $ S $ of $ G $ is said to normally generate $ G $ if $ G $ is the normal closure of $ S $ in $ G. $ In this case, any element of $ G $ can be written as a product of conjugates of elements of $ S $ and their inverses. If $ g\\\\in G $ and $ S $ is a normally generating subset of $ G, $ then we write $ \\\\| g\\\\|_{S} $ for the length of a shortest word in $ \\\\mbox{Conj}_{G}(S^{\\\\pm 1}): = \\\\{h^{-1}sh | h\\\\in G, s\\\\in S \\\\, \\\\mbox{or} \\\\, s{^{-1}}\\\\in S \\\\} $ needed to express $ g. $ For any normally generating subset $ S $ of $ G, $ we write $ \\\\|G\\\\|_{S} = \\\\mbox{sup}\\\\{\\\\|g\\\\|_{S} \\\\, |\\\\, \\\\, g\\\\in G\\\\}. $ Moreover, we write $ \\\\Delta(G) $ for the supremum of all $ \\\\|G\\\\|_{S}, $ where $ S $ is a finite normally generating subset of $ G, $ and we call $ \\\\Delta(G) $ the conjugacy diameter of $ G. $ In this paper, we derive the conjugacy diameters of the semidihedral $ 2 $-groups, the generalized quaternion groups and the modular $ p $-groups. This is a natural step after the determination of the conjugacy diameters of dihedral groups.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2024524\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2024524","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 $ G $ 是一个群。如果 $ G $ 是 $ S $ 在 $ G $ 中的正常闭包, 那么 $ G $ 的一个子集 $ S $ 就被称为正常生成 $ G $.如果 $ g\in G $ 和 $ S $ 是 $ G 的正常生成子集,那么我们可以写 $ \| g\|_{S} $ 表示 $ \mbox{Conj}_{G}(S^{\pm 1}) 中最短单词的长度: = \{h^{-1}sh | h\in G, s\in S \, \mbox{or}\对于 $ G 的任何正常生成子集 $ S $, $ 我们写 $\|G\|_{S} = \mbox{sup}\{\|g\|_{S} \, |\, \, g\in G\}.$ 此外,我们把所有 $\|G\|_{S} 的上集写成 $\Delta(G)$,其中 $ S $ 是 $ G 的有限常生成子集,$ 我们称 $ \Delta(G) $ 为 $ G 的共轭直径。 $ 在本文中,我们推导了半二面体 $ 2 $ 群、广义四元数群和模数 $ p $ 群的共轭直径。这是在确定了二面群的共轭直径之后的一个自然步骤。
The conjugacy diameters of non-abelian finite $ p $-groups with cyclic maximal subgroups
Let $ G $ be a group. A subset $ S $ of $ G $ is said to normally generate $ G $ if $ G $ is the normal closure of $ S $ in $ G. $ In this case, any element of $ G $ can be written as a product of conjugates of elements of $ S $ and their inverses. If $ g\in G $ and $ S $ is a normally generating subset of $ G, $ then we write $ \| g\|_{S} $ for the length of a shortest word in $ \mbox{Conj}_{G}(S^{\pm 1}): = \{h^{-1}sh | h\in G, s\in S \, \mbox{or} \, s{^{-1}}\in S \} $ needed to express $ g. $ For any normally generating subset $ S $ of $ G, $ we write $ \|G\|_{S} = \mbox{sup}\{\|g\|_{S} \, |\, \, g\in G\}. $ Moreover, we write $ \Delta(G) $ for the supremum of all $ \|G\|_{S}, $ where $ S $ is a finite normally generating subset of $ G, $ and we call $ \Delta(G) $ the conjugacy diameter of $ G. $ In this paper, we derive the conjugacy diameters of the semidihedral $ 2 $-groups, the generalized quaternion groups and the modular $ p $-groups. This is a natural step after the determination of the conjugacy diameters of dihedral groups.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.