Wanggen Chen, Fei Wen, Yao Wan, Lili Li, Yang Li, Yu Zhou
{"title":"2-2 PIMNT/epoxy 压电复合材料的模拟和结构设计","authors":"Wanggen Chen, Fei Wen, Yao Wan, Lili Li, Yang Li, Yu Zhou","doi":"10.1142/s2010135x23500315","DOIUrl":null,"url":null,"abstract":"Piezoelectric materials are commonly used in transducers to convert electromechanical signals due to their energy conversion characteristics. We designed a PIMNT/epoxy 2–2 composite to take full advantage of the excellent beam-mode piezoelectric and acoustic features of PIMNT single crystals. Following the approach used for piezoelectric ceramic composites, we selected PIMNT piezoelectric single crystal and EPO-TEK301-2 epoxy resin for the composite, and combined finite element analysis with experimental preparation. We prepared, tested and analyzed 2–2 piezoelectric single crystal composites with varying volume fractions, which showed high electromechanical coupling properties ([Formula: see text]%) and low acoustic impedance ([Formula: see text][Formula: see text]MRayl). These encouraging findings suggest the possibility of devising high-performance ultrasonic transducers utilizing the PIMNT/epoxy 2–2 composite.","PeriodicalId":14871,"journal":{"name":"Journal of Advanced Dielectrics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and structural design of 2–2 PIMNT/epoxy piezoelectric composites\",\"authors\":\"Wanggen Chen, Fei Wen, Yao Wan, Lili Li, Yang Li, Yu Zhou\",\"doi\":\"10.1142/s2010135x23500315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectric materials are commonly used in transducers to convert electromechanical signals due to their energy conversion characteristics. We designed a PIMNT/epoxy 2–2 composite to take full advantage of the excellent beam-mode piezoelectric and acoustic features of PIMNT single crystals. Following the approach used for piezoelectric ceramic composites, we selected PIMNT piezoelectric single crystal and EPO-TEK301-2 epoxy resin for the composite, and combined finite element analysis with experimental preparation. We prepared, tested and analyzed 2–2 piezoelectric single crystal composites with varying volume fractions, which showed high electromechanical coupling properties ([Formula: see text]%) and low acoustic impedance ([Formula: see text][Formula: see text]MRayl). These encouraging findings suggest the possibility of devising high-performance ultrasonic transducers utilizing the PIMNT/epoxy 2–2 composite.\",\"PeriodicalId\":14871,\"journal\":{\"name\":\"Journal of Advanced Dielectrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Dielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010135x23500315\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Dielectrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010135x23500315","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Simulation and structural design of 2–2 PIMNT/epoxy piezoelectric composites
Piezoelectric materials are commonly used in transducers to convert electromechanical signals due to their energy conversion characteristics. We designed a PIMNT/epoxy 2–2 composite to take full advantage of the excellent beam-mode piezoelectric and acoustic features of PIMNT single crystals. Following the approach used for piezoelectric ceramic composites, we selected PIMNT piezoelectric single crystal and EPO-TEK301-2 epoxy resin for the composite, and combined finite element analysis with experimental preparation. We prepared, tested and analyzed 2–2 piezoelectric single crystal composites with varying volume fractions, which showed high electromechanical coupling properties ([Formula: see text]%) and low acoustic impedance ([Formula: see text][Formula: see text]MRayl). These encouraging findings suggest the possibility of devising high-performance ultrasonic transducers utilizing the PIMNT/epoxy 2–2 composite.
期刊介绍:
The Journal of Advanced Dielectrics is an international peer-reviewed journal for original contributions on the understanding and applications of dielectrics in modern electronic devices and systems. The journal seeks to provide an interdisciplinary forum for the rapid communication of novel research of high quality in, but not limited to, the following topics: Fundamentals of dielectrics (ab initio or first-principles calculations, density functional theory, phenomenological approaches). Polarization and related phenomena (spontaneous polarization, domain structure, polarization reversal). Dielectric relaxation (universal relaxation law, relaxor ferroelectrics, giant permittivity, flexoelectric effect). Ferroelectric materials and devices (single crystals and ceramics). Thin/thick films and devices (ferroelectric memory devices, capacitors). Piezoelectric materials and applications (lead-based piezo-ceramics and crystals, lead-free piezoelectrics). Pyroelectric materials and devices Multiferroics (single phase multiferroics, composite ferromagnetic ferroelectric materials). Electrooptic and photonic materials. Energy harvesting and storage materials (polymer, composite, super-capacitor). Phase transitions and structural characterizations. Microwave and milimeterwave dielectrics. Nanostructure, size effects and characterizations. Engineering dielectrics for high voltage applications (insulation, electrical breakdown). Modeling (microstructure evolution and microstructure-property relationships, multiscale modeling of dielectrics).