Wanggen Chen, Fei Wen, Yao Wan, Lili Li, Yang Li, Yu Zhou
{"title":"2-2 PIMNT/epoxy 压电复合材料的模拟和结构设计","authors":"Wanggen Chen, Fei Wen, Yao Wan, Lili Li, Yang Li, Yu Zhou","doi":"10.1142/s2010135x23500315","DOIUrl":null,"url":null,"abstract":"Piezoelectric materials are commonly used in transducers to convert electromechanical signals due to their energy conversion characteristics. We designed a PIMNT/epoxy 2–2 composite to take full advantage of the excellent beam-mode piezoelectric and acoustic features of PIMNT single crystals. Following the approach used for piezoelectric ceramic composites, we selected PIMNT piezoelectric single crystal and EPO-TEK301-2 epoxy resin for the composite, and combined finite element analysis with experimental preparation. We prepared, tested and analyzed 2–2 piezoelectric single crystal composites with varying volume fractions, which showed high electromechanical coupling properties ([Formula: see text]%) and low acoustic impedance ([Formula: see text][Formula: see text]MRayl). These encouraging findings suggest the possibility of devising high-performance ultrasonic transducers utilizing the PIMNT/epoxy 2–2 composite.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"30 5","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and structural design of 2–2 PIMNT/epoxy piezoelectric composites\",\"authors\":\"Wanggen Chen, Fei Wen, Yao Wan, Lili Li, Yang Li, Yu Zhou\",\"doi\":\"10.1142/s2010135x23500315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Piezoelectric materials are commonly used in transducers to convert electromechanical signals due to their energy conversion characteristics. We designed a PIMNT/epoxy 2–2 composite to take full advantage of the excellent beam-mode piezoelectric and acoustic features of PIMNT single crystals. Following the approach used for piezoelectric ceramic composites, we selected PIMNT piezoelectric single crystal and EPO-TEK301-2 epoxy resin for the composite, and combined finite element analysis with experimental preparation. We prepared, tested and analyzed 2–2 piezoelectric single crystal composites with varying volume fractions, which showed high electromechanical coupling properties ([Formula: see text]%) and low acoustic impedance ([Formula: see text][Formula: see text]MRayl). These encouraging findings suggest the possibility of devising high-performance ultrasonic transducers utilizing the PIMNT/epoxy 2–2 composite.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"30 5\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010135x23500315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2010135x23500315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Simulation and structural design of 2–2 PIMNT/epoxy piezoelectric composites
Piezoelectric materials are commonly used in transducers to convert electromechanical signals due to their energy conversion characteristics. We designed a PIMNT/epoxy 2–2 composite to take full advantage of the excellent beam-mode piezoelectric and acoustic features of PIMNT single crystals. Following the approach used for piezoelectric ceramic composites, we selected PIMNT piezoelectric single crystal and EPO-TEK301-2 epoxy resin for the composite, and combined finite element analysis with experimental preparation. We prepared, tested and analyzed 2–2 piezoelectric single crystal composites with varying volume fractions, which showed high electromechanical coupling properties ([Formula: see text]%) and low acoustic impedance ([Formula: see text][Formula: see text]MRayl). These encouraging findings suggest the possibility of devising high-performance ultrasonic transducers utilizing the PIMNT/epoxy 2–2 composite.
期刊介绍:
ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications.
The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.