锚定计算方法:男性健康预防中的 #Movember 挑战推文案例研究

A. Berriche, Dominique Crié, M. Calciu
{"title":"锚定计算方法:男性健康预防中的 #Movember 挑战推文案例研究","authors":"A. Berriche, Dominique Crié, M. Calciu","doi":"10.3917/dm.112.0079","DOIUrl":null,"url":null,"abstract":"• Objectif L’objectif de cette étude est de présenter l’approche méthodologique computationnelle ancrée qui repose sur une démarche d’interprétation par les chercheurs des thèmes détectés par les algorithmes d’intelligence artificielle (IA) puis de l’appliquer au cas #Movember. • Méthodologie Une classification non supervisée par LDA et une analyse de sentiment ont été réalisées sur 144 906 tweets provenant de différents pays participants (France, Italie, Belgique, Australie, USA, UK, Arabie Saoudite, etc.). • Résultats Les résultats montrent que le processus de l’engagement individuel au mouvement social #Movember est composé de trois principaux éléments : (1) 4 segments d’engagement individuel (sympathisants, conscients, engagés et maintiens), (2) émotions collectives (positives et négatives) et (3) facteurs cognitifs et motivationnels (calcul bénéfices-coûts, efficacité collective et identité). • Implications managériales Les résultats proposent des actions marketing adaptées à chaque segment pour aider à la fois les organisateurs du mouvement #Movember et les professionnels de santé (PS) à atteindre deux principaux objectifs : (1) dépistage et (2) notoriété, recrutement et collecte de dons, grâce au big data, par le ciblage des personnes avec antécédents familiaux. • Originalité Les recherches sur #Movember utilisent habituellement les algorithmes supervisés qui présentent plusieurs limites tels que biais de confirmation, manque de répétabilité et une exigence en temps. Ce travail utilise le modèle non supervisé LDA pour identifier des concepts latents par la machine dans une perspective computationnelle ancrée (Computational Grounded Theory, CGT).","PeriodicalId":274504,"journal":{"name":"Décisions Marketing","volume":"276 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Une Approche Computationnelle Ancrée : Étude de cas des tweets du challenge #Movember en prévention de santé masculine\",\"authors\":\"A. Berriche, Dominique Crié, M. Calciu\",\"doi\":\"10.3917/dm.112.0079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"• Objectif L’objectif de cette étude est de présenter l’approche méthodologique computationnelle ancrée qui repose sur une démarche d’interprétation par les chercheurs des thèmes détectés par les algorithmes d’intelligence artificielle (IA) puis de l’appliquer au cas #Movember. • Méthodologie Une classification non supervisée par LDA et une analyse de sentiment ont été réalisées sur 144 906 tweets provenant de différents pays participants (France, Italie, Belgique, Australie, USA, UK, Arabie Saoudite, etc.). • Résultats Les résultats montrent que le processus de l’engagement individuel au mouvement social #Movember est composé de trois principaux éléments : (1) 4 segments d’engagement individuel (sympathisants, conscients, engagés et maintiens), (2) émotions collectives (positives et négatives) et (3) facteurs cognitifs et motivationnels (calcul bénéfices-coûts, efficacité collective et identité). • Implications managériales Les résultats proposent des actions marketing adaptées à chaque segment pour aider à la fois les organisateurs du mouvement #Movember et les professionnels de santé (PS) à atteindre deux principaux objectifs : (1) dépistage et (2) notoriété, recrutement et collecte de dons, grâce au big data, par le ciblage des personnes avec antécédents familiaux. • Originalité Les recherches sur #Movember utilisent habituellement les algorithmes supervisés qui présentent plusieurs limites tels que biais de confirmation, manque de répétabilité et une exigence en temps. Ce travail utilise le modèle non supervisé LDA pour identifier des concepts latents par la machine dans une perspective computationnelle ancrée (Computational Grounded Theory, CGT).\",\"PeriodicalId\":274504,\"journal\":{\"name\":\"Décisions Marketing\",\"volume\":\"276 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Décisions Marketing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3917/dm.112.0079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Décisions Marketing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3917/dm.112.0079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

- 目标 本研究旨在介绍锚定计算方法,该方法基于研究人员对人工智能(AI)算法检测到的主题的解释过程,然后将其应用于 #Movember 案例。- 方法 对来自不同参与国(法国、意大利、比利时、澳大利亚、美国、英国、沙特阿拉伯等)的 144906 条推文进行了无监督 LDA 分类和情感分析。- 结果表明,个人对 #Movember 社会运动的承诺过程由三个主要因素组成:(1) 个人承诺的 4 个部分(同情者、了解者、承诺者和维护者),(2) 集体情感(积极和消极),(3) 认知和动机因素(收益-成本计算、集体有效性和身份认同)。- 对管理者的启示 研究结果提出了适合每个细分市场的营销行动建议,以帮助 #Movember 运动的组织者和医疗保健专业人员(HPs)实现两个主要目标:(1)筛查;(2)通过大数据,针对有家族病史的人群进行宣传、招募和募捐。- 独创性 有关 #Movember 的研究通常使用监督算法,这种算法存在一些局限性,如确认偏差、缺乏可重复性和时间要求。这项工作使用无监督 LDA 模型,从计算基础理论(CGT)的角度通过机器识别潜在概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Une Approche Computationnelle Ancrée : Étude de cas des tweets du challenge #Movember en prévention de santé masculine
• Objectif L’objectif de cette étude est de présenter l’approche méthodologique computationnelle ancrée qui repose sur une démarche d’interprétation par les chercheurs des thèmes détectés par les algorithmes d’intelligence artificielle (IA) puis de l’appliquer au cas #Movember. • Méthodologie Une classification non supervisée par LDA et une analyse de sentiment ont été réalisées sur 144 906 tweets provenant de différents pays participants (France, Italie, Belgique, Australie, USA, UK, Arabie Saoudite, etc.). • Résultats Les résultats montrent que le processus de l’engagement individuel au mouvement social #Movember est composé de trois principaux éléments : (1) 4 segments d’engagement individuel (sympathisants, conscients, engagés et maintiens), (2) émotions collectives (positives et négatives) et (3) facteurs cognitifs et motivationnels (calcul bénéfices-coûts, efficacité collective et identité). • Implications managériales Les résultats proposent des actions marketing adaptées à chaque segment pour aider à la fois les organisateurs du mouvement #Movember et les professionnels de santé (PS) à atteindre deux principaux objectifs : (1) dépistage et (2) notoriété, recrutement et collecte de dons, grâce au big data, par le ciblage des personnes avec antécédents familiaux. • Originalité Les recherches sur #Movember utilisent habituellement les algorithmes supervisés qui présentent plusieurs limites tels que biais de confirmation, manque de répétabilité et une exigence en temps. Ce travail utilise le modèle non supervisé LDA pour identifier des concepts latents par la machine dans une perspective computationnelle ancrée (Computational Grounded Theory, CGT).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信