Ximin Yuan, Zhenjia Wang, Lixin Che, Xushuai Lv, Jie Xu, D. Shan, Bin Guo
{"title":"三维生物打印技术的最新发展和挑战","authors":"Ximin Yuan, Zhenjia Wang, Lixin Che, Xushuai Lv, Jie Xu, D. Shan, Bin Guo","doi":"10.36922/ijb.1752","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) bioprinting technologies play significant roles in various facets of the medical field, such as bioengineering, tissue repair, scaffolds, biomedical devices, and drug. As a versatile manufacturing technology, 3D bioprinting is able to overcome the constraints of other conventional methods and shows potential for future advancements in the field of biology. Nevertheless, the existing 3D bioprinting technologies still grapple with significant challenges in materials, equipment, and applications. Therefore, it is essential to select appropriate bioprinting method in alignment with the required application. In this review, we aim to cover the development, classification, and application of 3D bioprinting, with a particular emphasis on the fundamental printing principles. Additionally, we discuss the potential of 3D bioprinting in terms of materialization, structuralization, and functionalization, highlighting its prospective applications. We firmly believe that 3D printing technology will witness widespread adoption in the future, as it has the potential to address the limitations associated with multi-size, multi-material, multi-cell, and high-precision bioprinting. ","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent developments and challenges of 3D bioprinting technologies\",\"authors\":\"Ximin Yuan, Zhenjia Wang, Lixin Che, Xushuai Lv, Jie Xu, D. Shan, Bin Guo\",\"doi\":\"10.36922/ijb.1752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three-dimensional (3D) bioprinting technologies play significant roles in various facets of the medical field, such as bioengineering, tissue repair, scaffolds, biomedical devices, and drug. As a versatile manufacturing technology, 3D bioprinting is able to overcome the constraints of other conventional methods and shows potential for future advancements in the field of biology. Nevertheless, the existing 3D bioprinting technologies still grapple with significant challenges in materials, equipment, and applications. Therefore, it is essential to select appropriate bioprinting method in alignment with the required application. In this review, we aim to cover the development, classification, and application of 3D bioprinting, with a particular emphasis on the fundamental printing principles. Additionally, we discuss the potential of 3D bioprinting in terms of materialization, structuralization, and functionalization, highlighting its prospective applications. We firmly believe that 3D printing technology will witness widespread adoption in the future, as it has the potential to address the limitations associated with multi-size, multi-material, multi-cell, and high-precision bioprinting. \",\"PeriodicalId\":48522,\"journal\":{\"name\":\"International Journal of Bioprinting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bioprinting\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.36922/ijb.1752\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.1752","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Recent developments and challenges of 3D bioprinting technologies
Three-dimensional (3D) bioprinting technologies play significant roles in various facets of the medical field, such as bioengineering, tissue repair, scaffolds, biomedical devices, and drug. As a versatile manufacturing technology, 3D bioprinting is able to overcome the constraints of other conventional methods and shows potential for future advancements in the field of biology. Nevertheless, the existing 3D bioprinting technologies still grapple with significant challenges in materials, equipment, and applications. Therefore, it is essential to select appropriate bioprinting method in alignment with the required application. In this review, we aim to cover the development, classification, and application of 3D bioprinting, with a particular emphasis on the fundamental printing principles. Additionally, we discuss the potential of 3D bioprinting in terms of materialization, structuralization, and functionalization, highlighting its prospective applications. We firmly believe that 3D printing technology will witness widespread adoption in the future, as it has the potential to address the limitations associated with multi-size, multi-material, multi-cell, and high-precision bioprinting.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.