{"title":"水热法制备的 Ho3+/Tm3+/Yb3+ 共掺杂 NaGd(MO4)2 的上转换发光特性","authors":"Zhaoguang Zhang, Kuaile Dang, Huajian Li, Zeyu Song, Xiaochen Yu","doi":"10.7546/crabs.2024.01.02","DOIUrl":null,"url":null,"abstract":"In this paper, Ho$$^{3+}$$/Tm$$^{3+}$$/Yb$$^{3+}$$-doped NaGd(MO$$_{4})_{2}$$ phosphors were prepared using the hydrothermal method and the effect of Yb$$^{3+}$$ doping amount on the luminescence properties of these phosphor materials was investigated. NaGd(MO$$_{4})_{2}$$ was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectral analysis. The results showed that Ho$$^{3+}$$/Tm$$^{3+}$$/Yb$$^{3+}$$-doped NaGd(MO$$_{4})_{2}$$ has tetragonal phase structures, and doping with rare-earth ions decreases the cell parameters of NaGd(MO$$_{4})_{2}$$. NaGd(MO$$_{4})_{2}$$:Ho$$^{3}$$/Tm$$^{3+}$$/Yb$$^{3+}$$ generates blue, green, and red lights at 477, 545, and 659 nm, respectively, under an excitation of 980 nm. The emission of these three lights is called a three-photon process. As the doping ratio of Yb$$^{3+}$$ increases, the colour coordinates of samples gradually approach the white region from the red region, enabling NaGd(MO$$_{4})_{2}$$:0.1Ho/1Tm/20Yb to exhibit white emission. Doping with Yb$$^{3 + }$$ increases the energy transfer and quantum efficiencies of NaGd(MO$$_{4})_{2}$$. When the concentration of Yb$$^{3+}$$ reached 30%, the quantum efficiency of NaGd(MO$$_{4})_{2}$$ reached the maximum value of 188.37%. Overall, NaGd(MO$$_{4})_{2}$$:Ho/Tm/Yb has broad application prospects in the field of white lighting.","PeriodicalId":104760,"journal":{"name":"Proceedings of the Bulgarian Academy of Sciences","volume":"100 1-2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Upconversion Luminescence Properties of Ho3+/Tm3+/Yb3+ Co-doped NaGd(MO4)2 Prepared by Hydrothermal Method\",\"authors\":\"Zhaoguang Zhang, Kuaile Dang, Huajian Li, Zeyu Song, Xiaochen Yu\",\"doi\":\"10.7546/crabs.2024.01.02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Ho$$^{3+}$$/Tm$$^{3+}$$/Yb$$^{3+}$$-doped NaGd(MO$$_{4})_{2}$$ phosphors were prepared using the hydrothermal method and the effect of Yb$$^{3+}$$ doping amount on the luminescence properties of these phosphor materials was investigated. NaGd(MO$$_{4})_{2}$$ was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectral analysis. The results showed that Ho$$^{3+}$$/Tm$$^{3+}$$/Yb$$^{3+}$$-doped NaGd(MO$$_{4})_{2}$$ has tetragonal phase structures, and doping with rare-earth ions decreases the cell parameters of NaGd(MO$$_{4})_{2}$$. NaGd(MO$$_{4})_{2}$$:Ho$$^{3}$$/Tm$$^{3+}$$/Yb$$^{3+}$$ generates blue, green, and red lights at 477, 545, and 659 nm, respectively, under an excitation of 980 nm. The emission of these three lights is called a three-photon process. As the doping ratio of Yb$$^{3+}$$ increases, the colour coordinates of samples gradually approach the white region from the red region, enabling NaGd(MO$$_{4})_{2}$$:0.1Ho/1Tm/20Yb to exhibit white emission. Doping with Yb$$^{3 + }$$ increases the energy transfer and quantum efficiencies of NaGd(MO$$_{4})_{2}$$. When the concentration of Yb$$^{3+}$$ reached 30%, the quantum efficiency of NaGd(MO$$_{4})_{2}$$ reached the maximum value of 188.37%. Overall, NaGd(MO$$_{4})_{2}$$:Ho/Tm/Yb has broad application prospects in the field of white lighting.\",\"PeriodicalId\":104760,\"journal\":{\"name\":\"Proceedings of the Bulgarian Academy of Sciences\",\"volume\":\"100 1-2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Bulgarian Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/crabs.2024.01.02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Bulgarian Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/crabs.2024.01.02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Upconversion Luminescence Properties of Ho3+/Tm3+/Yb3+ Co-doped NaGd(MO4)2 Prepared by Hydrothermal Method
In this paper, Ho$$^{3+}$$/Tm$$^{3+}$$/Yb$$^{3+}$$-doped NaGd(MO$$_{4})_{2}$$ phosphors were prepared using the hydrothermal method and the effect of Yb$$^{3+}$$ doping amount on the luminescence properties of these phosphor materials was investigated. NaGd(MO$$_{4})_{2}$$ was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and spectral analysis. The results showed that Ho$$^{3+}$$/Tm$$^{3+}$$/Yb$$^{3+}$$-doped NaGd(MO$$_{4})_{2}$$ has tetragonal phase structures, and doping with rare-earth ions decreases the cell parameters of NaGd(MO$$_{4})_{2}$$. NaGd(MO$$_{4})_{2}$$:Ho$$^{3}$$/Tm$$^{3+}$$/Yb$$^{3+}$$ generates blue, green, and red lights at 477, 545, and 659 nm, respectively, under an excitation of 980 nm. The emission of these three lights is called a three-photon process. As the doping ratio of Yb$$^{3+}$$ increases, the colour coordinates of samples gradually approach the white region from the red region, enabling NaGd(MO$$_{4})_{2}$$:0.1Ho/1Tm/20Yb to exhibit white emission. Doping with Yb$$^{3 + }$$ increases the energy transfer and quantum efficiencies of NaGd(MO$$_{4})_{2}$$. When the concentration of Yb$$^{3+}$$ reached 30%, the quantum efficiency of NaGd(MO$$_{4})_{2}$$ reached the maximum value of 188.37%. Overall, NaGd(MO$$_{4})_{2}$$:Ho/Tm/Yb has broad application prospects in the field of white lighting.