广义卢卡斯序列中的梅森数

Alaa Altassan, Murat Alan
{"title":"广义卢卡斯序列中的梅森数","authors":"Alaa Altassan, Murat Alan","doi":"10.7546/crabs.2024.01.01","DOIUrl":null,"url":null,"abstract":"Let $$k \\geq 2$$ be an integer and let $$(L_{n}^{(k)})_{n \\geq 2-k}$$ be the $$k$$-generalized Lucas sequence with certain initial $$k$$ terms and each term afterward is the sum of the $$k$$ preceding terms. Mersenne numbers are the numbers of the form $$2^a-1$$, where $$a$$ is any positive integer. The aim of this paper is to determine all Mersenne numbers which lie inside $$k$$-Lucas sequences.","PeriodicalId":104760,"journal":{"name":"Proceedings of the Bulgarian Academy of Sciences","volume":"30 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mersenne Numbers in Generalized Lucas Sequences\",\"authors\":\"Alaa Altassan, Murat Alan\",\"doi\":\"10.7546/crabs.2024.01.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $$k \\\\geq 2$$ be an integer and let $$(L_{n}^{(k)})_{n \\\\geq 2-k}$$ be the $$k$$-generalized Lucas sequence with certain initial $$k$$ terms and each term afterward is the sum of the $$k$$ preceding terms. Mersenne numbers are the numbers of the form $$2^a-1$$, where $$a$$ is any positive integer. The aim of this paper is to determine all Mersenne numbers which lie inside $$k$$-Lucas sequences.\",\"PeriodicalId\":104760,\"journal\":{\"name\":\"Proceedings of the Bulgarian Academy of Sciences\",\"volume\":\"30 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Bulgarian Academy of Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/crabs.2024.01.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Bulgarian Academy of Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/crabs.2024.01.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 $$k \geq 2$$ 为整数,并设 $$(L_{n}^{(k)})_{n \geq 2-k}$$ 为具有一定初始 $$k$ 项的 $$k$ 广义卢卡斯序列,其后的每项都是前项 $$k$ 的和。梅森数是形式为 $$2^a-1$$$的数,其中 $$a$$ 是任意正整数。本文旨在确定所有位于 $$k$$ 卢卡斯序列内的梅森数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mersenne Numbers in Generalized Lucas Sequences
Let $$k \geq 2$$ be an integer and let $$(L_{n}^{(k)})_{n \geq 2-k}$$ be the $$k$$-generalized Lucas sequence with certain initial $$k$$ terms and each term afterward is the sum of the $$k$$ preceding terms. Mersenne numbers are the numbers of the form $$2^a-1$$, where $$a$$ is any positive integer. The aim of this paper is to determine all Mersenne numbers which lie inside $$k$$-Lucas sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信