用于可靠预测锂离子电池放电容量的人工智能驱动数字双胞胎模型

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Pranav Nair, Vinay Vakharia, Milind Shah, Yogesh Kumar, Marcin Woźniak, Jana Shafi, Muhammad Fazal Ijaz
{"title":"用于可靠预测锂离子电池放电容量的人工智能驱动数字双胞胎模型","authors":"Pranav Nair,&nbsp;Vinay Vakharia,&nbsp;Milind Shah,&nbsp;Yogesh Kumar,&nbsp;Marcin Woźniak,&nbsp;Jana Shafi,&nbsp;Muhammad Fazal Ijaz","doi":"10.1155/2024/8185044","DOIUrl":null,"url":null,"abstract":"<p>The present study proposes a novel method for predicting the discharge capabilities of lithium-ion (Li-ion) batteries using a digital twin model in practice. By combining cutting-edge machine learning techniques, such as AdaBoost and long short-term memory (LSTM) network, with a semiempirical mathematical structure, the digital twin (DT)—a virtual representation that mimics the behavior of actual batteries in real time is constructed. Various metaheuristic optimization methods, such as antlion, grey wolf optimization (GWO), and improved grey wolf optimization (IGWO), are used to adjust hyperparameters in order to optimize the models. As indicators of performance, mean absolute error (MAE) and root-mean-square error (RMSE) are applied to the models after they have undergone extensive training and ten-fold cross-validation. The models are rigorously trained and cross-validated using the NASA battery aging dataset, a widely accepted benchmark dataset for battery research. The IGWO-AdaBoost digital twin model emerges as the standout performer, achieving exceptional accuracy in predicting the discharge capacity. This model demonstrates the lowest mean absolute error (MAE) of 0.01, showcasing its superior precision in estimating discharge capabilities. Additionally, the root mean square error (RMSE) for the IGWO-AdaBoost DT model is also the lowest at 0.01. The findings of this study offer insightful information about the potential utilization of the digital twin model to accurately predict the discharge capacity of batteries.</p>","PeriodicalId":14089,"journal":{"name":"International Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Driven Digital Twin Model for Reliable Lithium-Ion Battery Discharge Capacity Predictions\",\"authors\":\"Pranav Nair,&nbsp;Vinay Vakharia,&nbsp;Milind Shah,&nbsp;Yogesh Kumar,&nbsp;Marcin Woźniak,&nbsp;Jana Shafi,&nbsp;Muhammad Fazal Ijaz\",\"doi\":\"10.1155/2024/8185044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study proposes a novel method for predicting the discharge capabilities of lithium-ion (Li-ion) batteries using a digital twin model in practice. By combining cutting-edge machine learning techniques, such as AdaBoost and long short-term memory (LSTM) network, with a semiempirical mathematical structure, the digital twin (DT)—a virtual representation that mimics the behavior of actual batteries in real time is constructed. Various metaheuristic optimization methods, such as antlion, grey wolf optimization (GWO), and improved grey wolf optimization (IGWO), are used to adjust hyperparameters in order to optimize the models. As indicators of performance, mean absolute error (MAE) and root-mean-square error (RMSE) are applied to the models after they have undergone extensive training and ten-fold cross-validation. The models are rigorously trained and cross-validated using the NASA battery aging dataset, a widely accepted benchmark dataset for battery research. The IGWO-AdaBoost digital twin model emerges as the standout performer, achieving exceptional accuracy in predicting the discharge capacity. This model demonstrates the lowest mean absolute error (MAE) of 0.01, showcasing its superior precision in estimating discharge capabilities. Additionally, the root mean square error (RMSE) for the IGWO-AdaBoost DT model is also the lowest at 0.01. The findings of this study offer insightful information about the potential utilization of the digital twin model to accurately predict the discharge capacity of batteries.</p>\",\"PeriodicalId\":14089,\"journal\":{\"name\":\"International Journal of Intelligent Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/8185044\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/8185044","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种在实践中使用数字孪生模型预测锂离子(Li-ion)电池放电能力的新方法。通过将 AdaBoost 和长短期记忆(LSTM)网络等尖端机器学习技术与半经验数学结构相结合,构建了数字孪生(DT)--一种模仿实际电池实时行为的虚拟表示。为了优化模型,使用了各种元启发式优化方法,如蚂蚁、灰狼优化(GWO)和改进的灰狼优化(IGWO)来调整超参数。作为性能指标,平均绝对误差(MAE)和均方根误差(RMSE)被应用于经过大量训练和十倍交叉验证的模型。这些模型使用 NASA 电池老化数据集进行了严格的训练和交叉验证,该数据集是电池研究领域公认的基准数据集。IGWO-AdaBoost 数字孪生模型表现突出,在预测放电容量方面达到了极高的准确度。该模型的平均绝对误差(MAE)最低,仅为 0.01,显示了其在估计放电能力方面的卓越精度。此外,IGWO-AdaBoost DT 模型的均方根误差 (RMSE) 也最小,仅为 0.01。这项研究的结果为利用数字孪生模型准确预测电池放电能力提供了深刻的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-Driven Digital Twin Model for Reliable Lithium-Ion Battery Discharge Capacity Predictions

The present study proposes a novel method for predicting the discharge capabilities of lithium-ion (Li-ion) batteries using a digital twin model in practice. By combining cutting-edge machine learning techniques, such as AdaBoost and long short-term memory (LSTM) network, with a semiempirical mathematical structure, the digital twin (DT)—a virtual representation that mimics the behavior of actual batteries in real time is constructed. Various metaheuristic optimization methods, such as antlion, grey wolf optimization (GWO), and improved grey wolf optimization (IGWO), are used to adjust hyperparameters in order to optimize the models. As indicators of performance, mean absolute error (MAE) and root-mean-square error (RMSE) are applied to the models after they have undergone extensive training and ten-fold cross-validation. The models are rigorously trained and cross-validated using the NASA battery aging dataset, a widely accepted benchmark dataset for battery research. The IGWO-AdaBoost digital twin model emerges as the standout performer, achieving exceptional accuracy in predicting the discharge capacity. This model demonstrates the lowest mean absolute error (MAE) of 0.01, showcasing its superior precision in estimating discharge capabilities. Additionally, the root mean square error (RMSE) for the IGWO-AdaBoost DT model is also the lowest at 0.01. The findings of this study offer insightful information about the potential utilization of the digital twin model to accurately predict the discharge capacity of batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Intelligent Systems
International Journal of Intelligent Systems 工程技术-计算机:人工智能
CiteScore
11.30
自引率
14.30%
发文量
304
审稿时长
9 months
期刊介绍: The International Journal of Intelligent Systems serves as a forum for individuals interested in tapping into the vast theories based on intelligent systems construction. With its peer-reviewed format, the journal explores several fascinating editorials written by today''s experts in the field. Because new developments are being introduced each day, there''s much to be learned — examination, analysis creation, information retrieval, man–computer interactions, and more. The International Journal of Intelligent Systems uses charts and illustrations to demonstrate these ground-breaking issues, and encourages readers to share their thoughts and experiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信