{"title":"土地利用和土地覆被 (LULC) 的长期变化对无测站邦坦加流域土壤流失、沉积物输出和沉积的影响","authors":"E. Mwanga, Abdul-Ganiyu Shaibu, Zakaria Issaka","doi":"10.2166/h2oj.2024.088","DOIUrl":null,"url":null,"abstract":"\n \n Soil loss due to surface runoff is a natural phenomenon accelerated by anthropogenic activities. The study attempted to evaluate soil loss, sediment export, and deposition as influenced by changes in land use and land cover (LULC) in the Bontanga watershed. The InVEST-SDR model integrated with RUSLE was used in soil loss assessment. Results revealed that agricultural land produced 11,365.39 tons/year of soil loss in 1997, followed by 17,476.85 tons/year in 2002. In 2013, agricultural land experienced a soil loss of 5,391.98 tons/year, which finally increased to 91,274.53 tons/year in 2022. Agricultural land exported 56.16% of sediment, 13.39% of dense forest, and 13.30% of grassland. Dense forest deposited 41.54% of the sediment load, 30.49% of mixed shrub and grassland, and 10.85% of grassland. Over a long period, agricultural land is anticipated to contribute soil loss of 2,347,414.04 tons/year and sediment export of 388,497.56 tons/year. Sediment deposition amounting to 1,048,258.78 tons/year is anticipated to be deposited within the agricultural field. Both MAE and MAPE statistical measurements indicate a good model prediction performance for soil loss and sediment export. Understanding where sediments are produced and delivered will guide decision-makers, land use planners, and watershed managers in monitoring and planning the Bontanga watershed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"59 ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of long-term land use and land cover (LULC) changes on soil loss, sediment export, and deposition in the ungauged Bontanga watershed\",\"authors\":\"E. Mwanga, Abdul-Ganiyu Shaibu, Zakaria Issaka\",\"doi\":\"10.2166/h2oj.2024.088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Soil loss due to surface runoff is a natural phenomenon accelerated by anthropogenic activities. The study attempted to evaluate soil loss, sediment export, and deposition as influenced by changes in land use and land cover (LULC) in the Bontanga watershed. The InVEST-SDR model integrated with RUSLE was used in soil loss assessment. Results revealed that agricultural land produced 11,365.39 tons/year of soil loss in 1997, followed by 17,476.85 tons/year in 2002. In 2013, agricultural land experienced a soil loss of 5,391.98 tons/year, which finally increased to 91,274.53 tons/year in 2022. Agricultural land exported 56.16% of sediment, 13.39% of dense forest, and 13.30% of grassland. Dense forest deposited 41.54% of the sediment load, 30.49% of mixed shrub and grassland, and 10.85% of grassland. Over a long period, agricultural land is anticipated to contribute soil loss of 2,347,414.04 tons/year and sediment export of 388,497.56 tons/year. Sediment deposition amounting to 1,048,258.78 tons/year is anticipated to be deposited within the agricultural field. Both MAE and MAPE statistical measurements indicate a good model prediction performance for soil loss and sediment export. Understanding where sediments are produced and delivered will guide decision-makers, land use planners, and watershed managers in monitoring and planning the Bontanga watershed.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"59 \",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/h2oj.2024.088\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/h2oj.2024.088","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of long-term land use and land cover (LULC) changes on soil loss, sediment export, and deposition in the ungauged Bontanga watershed
Soil loss due to surface runoff is a natural phenomenon accelerated by anthropogenic activities. The study attempted to evaluate soil loss, sediment export, and deposition as influenced by changes in land use and land cover (LULC) in the Bontanga watershed. The InVEST-SDR model integrated with RUSLE was used in soil loss assessment. Results revealed that agricultural land produced 11,365.39 tons/year of soil loss in 1997, followed by 17,476.85 tons/year in 2002. In 2013, agricultural land experienced a soil loss of 5,391.98 tons/year, which finally increased to 91,274.53 tons/year in 2022. Agricultural land exported 56.16% of sediment, 13.39% of dense forest, and 13.30% of grassland. Dense forest deposited 41.54% of the sediment load, 30.49% of mixed shrub and grassland, and 10.85% of grassland. Over a long period, agricultural land is anticipated to contribute soil loss of 2,347,414.04 tons/year and sediment export of 388,497.56 tons/year. Sediment deposition amounting to 1,048,258.78 tons/year is anticipated to be deposited within the agricultural field. Both MAE and MAPE statistical measurements indicate a good model prediction performance for soil loss and sediment export. Understanding where sediments are produced and delivered will guide decision-makers, land use planners, and watershed managers in monitoring and planning the Bontanga watershed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.