Jeffrey Wu, Bradley Maller, Rujul Kaul, Andrea Galabow, A. Bryan, Alexander Neuwelt
{"title":"大剂量对乙酰氨基酚治疗癌症","authors":"Jeffrey Wu, Bradley Maller, Rujul Kaul, Andrea Galabow, A. Bryan, Alexander Neuwelt","doi":"10.3390/livers4010007","DOIUrl":null,"url":null,"abstract":"The use of high-dose acetaminophen (AAP) with n-acetylcysteine (NAC) rescue was studied as an anti-cancer treatment in phase I trials with promising signals of anti-tumor efficacy. Correlative analysis suggested that AAP has a free-radical-independent mechanism of anti-tumor activity—in contrast to the well-established mechanism of AAP hepatotoxicity. Subsequent “reverse translational” studies in the pre-clinical setting have identified novel mechanisms of action of high-dose AAP, including modulation of JAK-STAT signaling in both the tumor cell and the tumor immune microenvironment. Importantly, these effects are free-radical-independent and not reversed by concurrent administration of the established AAP rescue agents fomepizole and NAC. By administering high-dose AAP concurrently with fomepizole and NAC, 100-fold higher AAP levels than those of standard dosing can be achieved in mice without detected toxicity and with substantial anti-tumor efficacy against commonly used mouse models of lung and breast cancer that are resistant to standard first-line anti-cancer therapies. With these recent advances, additional clinical trials of high-dose AAP with concurrent NAC and fomepizole-based rescue are warranted.","PeriodicalId":74083,"journal":{"name":"Livers","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Dose Acetaminophen as a Treatment for Cancer\",\"authors\":\"Jeffrey Wu, Bradley Maller, Rujul Kaul, Andrea Galabow, A. Bryan, Alexander Neuwelt\",\"doi\":\"10.3390/livers4010007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of high-dose acetaminophen (AAP) with n-acetylcysteine (NAC) rescue was studied as an anti-cancer treatment in phase I trials with promising signals of anti-tumor efficacy. Correlative analysis suggested that AAP has a free-radical-independent mechanism of anti-tumor activity—in contrast to the well-established mechanism of AAP hepatotoxicity. Subsequent “reverse translational” studies in the pre-clinical setting have identified novel mechanisms of action of high-dose AAP, including modulation of JAK-STAT signaling in both the tumor cell and the tumor immune microenvironment. Importantly, these effects are free-radical-independent and not reversed by concurrent administration of the established AAP rescue agents fomepizole and NAC. By administering high-dose AAP concurrently with fomepizole and NAC, 100-fold higher AAP levels than those of standard dosing can be achieved in mice without detected toxicity and with substantial anti-tumor efficacy against commonly used mouse models of lung and breast cancer that are resistant to standard first-line anti-cancer therapies. With these recent advances, additional clinical trials of high-dose AAP with concurrent NAC and fomepizole-based rescue are warranted.\",\"PeriodicalId\":74083,\"journal\":{\"name\":\"Livers\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Livers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/livers4010007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Livers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/livers4010007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The use of high-dose acetaminophen (AAP) with n-acetylcysteine (NAC) rescue was studied as an anti-cancer treatment in phase I trials with promising signals of anti-tumor efficacy. Correlative analysis suggested that AAP has a free-radical-independent mechanism of anti-tumor activity—in contrast to the well-established mechanism of AAP hepatotoxicity. Subsequent “reverse translational” studies in the pre-clinical setting have identified novel mechanisms of action of high-dose AAP, including modulation of JAK-STAT signaling in both the tumor cell and the tumor immune microenvironment. Importantly, these effects are free-radical-independent and not reversed by concurrent administration of the established AAP rescue agents fomepizole and NAC. By administering high-dose AAP concurrently with fomepizole and NAC, 100-fold higher AAP levels than those of standard dosing can be achieved in mice without detected toxicity and with substantial anti-tumor efficacy against commonly used mouse models of lung and breast cancer that are resistant to standard first-line anti-cancer therapies. With these recent advances, additional clinical trials of high-dose AAP with concurrent NAC and fomepizole-based rescue are warranted.