{"title":"在巴格利-托尔维克方程中利用改良阿多米分解法处理迪里夏特边界条件","authors":"M. Al-Mazmumy, Mona Alsulami","doi":"10.29020/nybg.ejpam.v17i1.5050","DOIUrl":null,"url":null,"abstract":"The Bagley-Torvik equation is an imperative differential equation that considerably arises in various branches of mathematical physics and mechanics. However, very few methods exist for the treatment of the model analytically; in fact, researchers frequently shop for semi-analytical and numerical methods in their studies. Therefore, the main goal of this research is to find theexact analytical solution for the fractional Bagley-Torvik equation fitted with Dirichlet boundary data, as well as a system of fractional Bagley-Torvik equations. Thus, this research aims to show that the modified Adomian decomposition method (MADM) via the proposed two algorithms is a very effective method for treating a class of Bagley-Torvik equations endowed with Dirichletboundary data. Certainly, MADM is a very powerful approach for solving dissimilar functional equations without the need for either linearization, discretization, perturbation, or even unnecessary restraining postulations. Additionally, the method reveals exact analytical solutions whenever obtainable or closed-form series solutions whenever exact solutions are not feasible. Lastly, some illustrative test problems of the governing model are examined to demonstrate the superiority of the proposed algorithms.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"466 ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of the Modified Adomian Decomposition Method on the Bagley-Torvik Equation Amidst Dirichlet Boundary Conditions\",\"authors\":\"M. Al-Mazmumy, Mona Alsulami\",\"doi\":\"10.29020/nybg.ejpam.v17i1.5050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Bagley-Torvik equation is an imperative differential equation that considerably arises in various branches of mathematical physics and mechanics. However, very few methods exist for the treatment of the model analytically; in fact, researchers frequently shop for semi-analytical and numerical methods in their studies. Therefore, the main goal of this research is to find theexact analytical solution for the fractional Bagley-Torvik equation fitted with Dirichlet boundary data, as well as a system of fractional Bagley-Torvik equations. Thus, this research aims to show that the modified Adomian decomposition method (MADM) via the proposed two algorithms is a very effective method for treating a class of Bagley-Torvik equations endowed with Dirichletboundary data. Certainly, MADM is a very powerful approach for solving dissimilar functional equations without the need for either linearization, discretization, perturbation, or even unnecessary restraining postulations. Additionally, the method reveals exact analytical solutions whenever obtainable or closed-form series solutions whenever exact solutions are not feasible. Lastly, some illustrative test problems of the governing model are examined to demonstrate the superiority of the proposed algorithms.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":\"466 \",\"pages\":\"\"},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29020/nybg.ejpam.v17i1.5050\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v17i1.5050","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Utilization of the Modified Adomian Decomposition Method on the Bagley-Torvik Equation Amidst Dirichlet Boundary Conditions
The Bagley-Torvik equation is an imperative differential equation that considerably arises in various branches of mathematical physics and mechanics. However, very few methods exist for the treatment of the model analytically; in fact, researchers frequently shop for semi-analytical and numerical methods in their studies. Therefore, the main goal of this research is to find theexact analytical solution for the fractional Bagley-Torvik equation fitted with Dirichlet boundary data, as well as a system of fractional Bagley-Torvik equations. Thus, this research aims to show that the modified Adomian decomposition method (MADM) via the proposed two algorithms is a very effective method for treating a class of Bagley-Torvik equations endowed with Dirichletboundary data. Certainly, MADM is a very powerful approach for solving dissimilar functional equations without the need for either linearization, discretization, perturbation, or even unnecessary restraining postulations. Additionally, the method reveals exact analytical solutions whenever obtainable or closed-form series solutions whenever exact solutions are not feasible. Lastly, some illustrative test problems of the governing model are examined to demonstrate the superiority of the proposed algorithms.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.