检验云环境中使用度量日志和机器学习的智能故障检测模型

Junho Lee, Jae-Pyo Park
{"title":"检验云环境中使用度量日志和机器学习的智能故障检测模型","authors":"Junho Lee, Jae-Pyo Park","doi":"10.5762/kais.2024.25.1.773","DOIUrl":null,"url":null,"abstract":"This paper describes the process of building and optimizing a machine learning model using server metric logs to predict game service failures. Of 334 servers in operation for the game service, 29 logs were utilized","PeriodicalId":112431,"journal":{"name":"Journal of the Korea Academia-Industrial cooperation Society","volume":"109 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining Intelligent Failure Detection Models Using Metric Logs and Machine Learning in a Cloud Environment\",\"authors\":\"Junho Lee, Jae-Pyo Park\",\"doi\":\"10.5762/kais.2024.25.1.773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the process of building and optimizing a machine learning model using server metric logs to predict game service failures. Of 334 servers in operation for the game service, 29 logs were utilized\",\"PeriodicalId\":112431,\"journal\":{\"name\":\"Journal of the Korea Academia-Industrial cooperation Society\",\"volume\":\"109 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korea Academia-Industrial cooperation Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5762/kais.2024.25.1.773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Academia-Industrial cooperation Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5762/kais.2024.25.1.773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了利用服务器度量日志建立和优化机器学习模型以预测游戏服务故障的过程。在为游戏服务运行的 334 台服务器中,利用了 29 份日志
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining Intelligent Failure Detection Models Using Metric Logs and Machine Learning in a Cloud Environment
This paper describes the process of building and optimizing a machine learning model using server metric logs to predict game service failures. Of 334 servers in operation for the game service, 29 logs were utilized
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信