{"title":"醛缩酶:生物技术应用中理想的生物催化候选物","authors":"Moloko G. Mathipa-Mdakane, Lucia Steenkamp","doi":"10.3390/catal14020114","DOIUrl":null,"url":null,"abstract":"The utilization of chemical reactions is crucial in various industrial processes, including pharmaceutical synthesis and the production of fine chemicals. However, traditional chemical catalysts often lack selectivity, require harsh reaction conditions, and lead to the generation of hazardous waste. In response, biocatalysis has emerged as a promising approach within green chemistry, employing enzymes as catalysts. Among these enzymes, aldolases have gained attention for their efficiency and selectivity in catalyzing C-C bond formation, making them versatile biocatalysts for diverse biotechnological applications. Despite their potential, challenges exist in aldolase-based biocatalysis, such as limited availability of natural aldolases with desired catalytic properties. This review explores strategies to address these challenges, including immobilization techniques, recombinant expression, and protein engineering approaches. By providing valuable insights into the suitability of aldolases as biocatalysts, this review lays the groundwork for future research and the exploration of innovative strategies to fully harness the potential of aldolases in biotechnology. This comprehensive review aims to attract readers by providing a comprehensive overview of aldolase-based biocatalysis, addressing challenges, and proposing avenues for future research and development.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":"324 14","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aldolase: A Desirable Biocatalytic Candidate for Biotechnological Applications\",\"authors\":\"Moloko G. Mathipa-Mdakane, Lucia Steenkamp\",\"doi\":\"10.3390/catal14020114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The utilization of chemical reactions is crucial in various industrial processes, including pharmaceutical synthesis and the production of fine chemicals. However, traditional chemical catalysts often lack selectivity, require harsh reaction conditions, and lead to the generation of hazardous waste. In response, biocatalysis has emerged as a promising approach within green chemistry, employing enzymes as catalysts. Among these enzymes, aldolases have gained attention for their efficiency and selectivity in catalyzing C-C bond formation, making them versatile biocatalysts for diverse biotechnological applications. Despite their potential, challenges exist in aldolase-based biocatalysis, such as limited availability of natural aldolases with desired catalytic properties. This review explores strategies to address these challenges, including immobilization techniques, recombinant expression, and protein engineering approaches. By providing valuable insights into the suitability of aldolases as biocatalysts, this review lays the groundwork for future research and the exploration of innovative strategies to fully harness the potential of aldolases in biotechnology. This comprehensive review aims to attract readers by providing a comprehensive overview of aldolase-based biocatalysis, addressing challenges, and proposing avenues for future research and development.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":\"324 14\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/catal14020114\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/catal14020114","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Aldolase: A Desirable Biocatalytic Candidate for Biotechnological Applications
The utilization of chemical reactions is crucial in various industrial processes, including pharmaceutical synthesis and the production of fine chemicals. However, traditional chemical catalysts often lack selectivity, require harsh reaction conditions, and lead to the generation of hazardous waste. In response, biocatalysis has emerged as a promising approach within green chemistry, employing enzymes as catalysts. Among these enzymes, aldolases have gained attention for their efficiency and selectivity in catalyzing C-C bond formation, making them versatile biocatalysts for diverse biotechnological applications. Despite their potential, challenges exist in aldolase-based biocatalysis, such as limited availability of natural aldolases with desired catalytic properties. This review explores strategies to address these challenges, including immobilization techniques, recombinant expression, and protein engineering approaches. By providing valuable insights into the suitability of aldolases as biocatalysts, this review lays the groundwork for future research and the exploration of innovative strategies to fully harness the potential of aldolases in biotechnology. This comprehensive review aims to attract readers by providing a comprehensive overview of aldolase-based biocatalysis, addressing challenges, and proposing avenues for future research and development.
期刊介绍:
ACS Applied Electronic Materials is an interdisciplinary journal publishing original research covering all aspects of electronic materials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials science, engineering, optics, physics, and chemistry into important applications of electronic materials. Sample research topics that span the journal's scope are inorganic, organic, ionic and polymeric materials with properties that include conducting, semiconducting, superconducting, insulating, dielectric, magnetic, optoelectronic, piezoelectric, ferroelectric and thermoelectric.
Indexed/Abstracted:
Web of Science SCIE
Scopus
CAS
INSPEC
Portico